IOWA STATE UNIVERSITY

Digital Repository

. . . Iowa State University Capstones, Theses and
Retrospective Theses and Dissertations VP !

Dissertations

1972

Symbiotic computer system measurement and
evaluation

Dana Wayne Zimmerli
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

b Part of the Computer Sciences Commons

Recommended Citation

Zimmerli, Dana Wayne, "Symbiotic computer system measurement and evaluation " (1972). Retrospective Theses and Dissertations.
523S.
https://lib.dr.iastate.edu/rtd/5235

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F5235&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F5235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F5235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F5235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F5235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F5235&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F5235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/5235?utm_source=lib.dr.iastate.edu%2Frtd%2F5235&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

INFORMATION TO USERS

This dissertation was produced from a microfilm copy of the original document.
While the most advanced technological means to photograph and reproduce this

document have been used, the quality is heavily dependent upon the quality of
the original submitted.

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1. The sign or “‘target” for pages apparently lacking from the document
photographed is ""Missing Page(s)”. If it was possible to obtain the
missing page(s) or section, they are spliced into the film along with
adjacent pages. This may have necessitated cutting thru an image and
duplicating adjacent pages to insure you complete continuity.

2. When an imagz on the film is obliterated with a large round black
mark, it is an indication that the photographer suspected that the
copy may have moved during exposure and thus cause a blurred
image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being
photographed the photographer followed a definite method in
“sectioning” the material. It is customary to begin photoing at the
upper left hand corner of a large sheet and to coniinue phoioing from
left to right in equal sections with a small overlap. If necessary,
sectioning is continued again — beginning below the first row and
continuing on until complete.

4, The majority of users indicate that the textual content is of greatest
value, however, a somewhat higher quality reproduction could be
made from ‘“photographs” if essential to the understanding of the
dissertation, Silver prints of “photographs” may he ordered at
additional charge by writing the Order Department, giving the catalog
number, title, author and specific pages you wish reproduced.

University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48106

A Xerox Education Company

72-20,009

ZIMMERLI, Dana Wayne, 1942-
% SYMBIOTIC COMPUTER SYSTEM MEASUREMENT AND
; EVALUATION.

Towa State University, Ph.D., 1972
Computer Science

B) P oLy Sy Y - &
universitv micron

=

saa o A W J
ms, A XEROX Company

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

Symbiotic computer system measurement and evaluation
by
Dana Wayne Zimmerli

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of
The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subjects: Electrical Engineering
Computer Science

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

For the Major Departments

Signature was redacted for privacy.

For the Graduate College

Iowa State University
Ames, Iowa

1972

PLEASE NOTE:

Some pages may have
indistinct print.

Filmed as received.

University Microfiims, A Xerox Education Company

ii

TABLE OF CONTENTS
PART ONE. THE PROBLEM OF EVALUATION
INTRODUCTION

INTRODUCTION TO EVALUATION
Why Evaluate ?

CLASSES OF EVALUATION

TYPES OF EVALUATION
Analysis of Evaluation Methods

FEVALUATION DATA
Required Data for Evaluation

A SUFFICIENT SET OF MEASURABLE PARAMETERS

HOW TO USE THE DATA
Summary - Part One

PART TWO. THE MEASUREMENT OF DATA
INTRODUCTION
COLLECTION OF DATA
DATA REDUCTION
Trace Record Production
Data Analysis Discussion
PART THREE, THE SIMULATION OF AN OPERATING SYSTEM

TRACE-DRIVEN SYSTEM SIMULATION
Why Create a New Simulation Language?

THE BASIC OPERATING SYSTEM SIMULATOR

Variable Types
SIMULATING AN IBH/360 O0S SYSTEH
PART FOUR. CONCLUSIONS AND SUMHARY
BIBLIOGRAPHY

APPENDIX A: ACRONYHNS OF THE IBM OPERATING SYSTEMN

Page

19
20

24
28

36

41
45

48

83

84
86

89
91

101
107

110

APPENDIX

APPENDIX

APPENDIX
APPENDIX

APPENDIX

iii

GLOSSARY OF TERMS

DATA COLLECTION NMNONITOR PROGRAM
LISTING

BOSS LANGUAGE STATEMENTS
FORMAL LANGUAGE DETINITION OF BOSS

ELEMENTS OF THE ISU META PI
COMPILER-COMPILER

111

131

145

154

163

Figure

Figure

Figure

Figure
Figure
Figure

Figure

Figure
Figure

Figure

iv
LIST OF FIGURES
A flow diagram of the collection
Monitor

The monitor output record for EXCP

The monitor output record for Error
EXCP

The monitor output for I/0 interrupts
The menitor output for job dispatching
The jobtrace records

Output information from the data
reduction program

Activity plots of the collected data
An activity plot+ for data analysis

A sample system simulation in BOSS

Page

53

55

56

70

77
81

98

PART ONE.

THE PROBLENM OF EVALUATION

INTRODUCTION

Computer evaluation began as soon as the second computer
wvas developed. The inevitable comparisons have been made
over and over again by persons interested in using computers.
Farly evaluations were primarily comparisons of the hardware
characteristics, but the development of the computer operat-
irg system added another facet to the problem. Where simple
numeric comparison is sufficient for a hardware comparison,
the software is much more complicated.

It is the purpose of this dissertation to present a
method for the evaluation of an operating system. This
nethod is a three-step process which is described in some
detail. The basis for the evaluation is a set of data which
is obtained by direct measurement of an average job stream in
the computer installation. This data is a microscopic trace
of all of the importent events occurring during the time of
reasurement, This data is then restructured into a Jjob-
oriented representatior of the job stream. As the data is

restructured, the characteristics of the job stream are accu-

£3

[
2V

ted

L

i nd presented for preliminary ana . Tha final

lveica
~ysis

*

step of th

4y
@
<3
[}
[
=
fsV]
o+
=
o]
=
'J -
n

somevwhat iterative in nature., The
restructured data is used as input to a simulation model of
the operating system. The simulation model may then be var-

ied to optimize the performance of the job stream as applied

to the model.

This dissertation describes the choice of parameters to
be measured, using several references as quides to these
choices. The measurability of these parame*ters is experimen-
tally verified by measurements on an IBM 360/65 system. The
resulting data is accumulated and restructured as dsscribed
above, and some interesting observations are made. Finally,
a simulation language is developed which supports the job
stream data as input, ard provides the necessary features to

simulate an operating systen.

INTRODUCTION TO EVALUATION

Early computer programmers enjoyed a sometimes enviable
rapport with the computer. A detailed knowledge of the conm-
puter's characteristics was necessary to produce sfficient
programs. Many man-hours were necessary to develop a progranm
and patience was a most important quality in the programmer.
Often, only rnumeric codes were available for programming pur-

poses. Debugging was usually done by tracing the program on

(a4

display lights and programmers worked directly with the ma-

chine.

The sole purpose of early operating systems was the re-
duction of computer idle time., Even a casual observer could
easily discern the primary sources of idle time in an envi-
ronment where the programmer marched into the machine room
with his card decks and listings, preparatory to an extended
session of playing with the console keyboard. Whenever the
program failed and the machine stcpped, the programmer
scratched his head and tried to figure out his next move,

Whern ths job was completed o2r the time period expired, the

MY

Lo Lo ~L " PR TN + .
cransitel OX cerian ¢ the dapa’-: ng r

- "
- Ly P

[

.- ~
[{X~¥ ~

Apvrammoar anAd fram +ho
\J"J—\A\lllli\;& A A A e e WP L CRYY

]

ircoming programmer caused more idle time.
The initial thrus*t of the computer operating system was
to provide some means of isolating the programmer from the

computer. Professional computer operators were hired to per-

form some of the mechanical operations involved with progranm
loading and execution. These operators certainly cut *he
amount of time required to transfer from job to job, but this
time period still was noticeable.

The next step was to automate these operator functions
as much as possible. This automatiocn required rigid control
of access to the machine console. Programming 2ids such as
dump routires, loader programs, and symbolic assemblers were
necessary to free the programmer from console debugging.
These aids also allowed programmers to spend more time on tha
logic of their programs arnd less time to the mechanics of
coding the progran.

The development cf the first computer operating systen
has been attributed to the General Motors Research Laborato-
ries by Steel (30). General Motors developed and used an el-
ementary operating system for their 701 computer and later
collaborated with the Los Angeles division of North American
Aviation to produce a similar system for a 704 computer.
Shortly after the cperating sys*tem concept became gensrally
known, the idea jumped the boundaries cof machine type. Today

2 ~ mmermmd m o e tam 3 P
UL aLiily [DYyosuTid alw uocTu L MOUD L

v deememmn TV e 2 mmem e~ R .
ul_LVCL-‘.IG._L.L] R R AV A I F -2 P TRV RS §
with large computers.

Batch processing or jobstacking was the basic idea of

early operating systems. Ra‘her than reading each jobh into

the machine independently, a ccllection of jobs (a batch) is

gathered into an input stream together with their respective
data. A supervisor program, which is normally kept in the
main storage unit, loads the next job from the input file and
initiates execution of that job. Upon completion of the job,
control must be returned to the supervisor, which then
selects the next job in the input streanm.

The remaining idle time during program execution was
connect2d with the assignment of input-output(I/0) devices to
particular jobs. The complex logistics of these assignments
was solved by removing all I/0 from the programmer's control.
Standard routines that are part of the operating system were
added to perform the I/0 operations with standardized con=-
straints. Additionally, error recovery was standardized for
all programmers.

These changes and requirements allowed the efficiency of
the computer to increase by reducing the idle time and
delivering more machine cycles 4o the users. At the same
time, changes were occurring in the area of programming. A
desire to express programs in a problem-oriented lanquage led
to the development of languages which guided researchers into

LA RAave
- u <

ATAarnmand AFf wbha
n< v UL

PRI wiaQa

r

A A mammema Y A
I a>d a vunmpare

tam~s homamas Luawn
na o urewuiine syt H

®»

e
compiler allowed programmers to express their programs in a
language which is reasonabtly close to natural language. The
compiler is the software device which allows a programming

language tc be converted +to a machine code for execution.

These problem-oriented languages are easy to learn and
remember because they are closely related to both the prob-
lems to be solved and a natural language (usually Fnglish).
These languages are also easier thaﬂ machine or assembler
languages because of the macro like properties of each state-
ment and the automatic management of storage that they pro-
vide. This ease of use propagated the use of the computer
intc many new areas.

Unfortunately, dumps of memory at abnormal completion
were ne lenger as useful in error diagnesis., The compiler
obscured the executed code because a one-to-one relationship
Wwas no longer possible. Error diagnostics were then devel-
oped within the compilers *to aid the programmer. These diag-
nostics aided the debugging process by classifying the errors
and indicating, where possible, the area of trouble in the
program. The diagnostics removed some of the last objections
to the restricted access to the computer console. The pro-
grammer could no longer gain very much by watching ths con-
scle. The isolation of programmer and console was thus

achieved,

- —— et a2 . o
nore SOpinisSticateqa an

)

AS pTogramii

<u

Complex,
routines were developed and shared for common problems. To
use these routines in many differen* applications, the idea
of the relocatable loader was developed. Using this concept,

programs or parts of programs could then be written in such a

manner that they could be loaded into any location in memory
and then could be dynamically linked to any other progranm.

To contrel and direct the computer, job control lan-
guages were developed. The allocation of resources such as
primary and secondary storage and I/0 devices is controlled
by specific statements in the input stream. These resources
are then logically or actually connected to the program by
the operating system. Common or standard routines are also
combined with the program under the direction of the job con-
trol statements. Operator action can then be directed by the
operating system, and resource allocation can be automatical-
ly determined.

Idle time was now observed in the time required to
transfer data from I/O0 devices and secondary storage into or
out c¢f the main memory. The necessity of communicating with
the programmer required mechanical operations which were
slower than the internal operations. This coamunication tinme
vas urused since the program had to wait for the data. Sinc=
computer personnel were interested in the over-all efficien-

cy, some form of overlapping the internal opevrations was soon

-+

dAamumdd
tenpTsl

£

The ability %*o overlap I,/0 and computation was made pos-
sible by the principle of cycle-stealing in =merory devices.
Cvcle-stealing allows the 1/0 equipment to obtain memory

cycles on demand for fetching or storing data. These nmemorv

cycles can often be fitted in during times when the CPU is
not accessing memory. This sharing of memory allows the in-
dependent action of the I/0 devices and the CPU.

Multiprogramming, the concept of executing more than one
programming job at a time, was an attempt to utilize a
greater proportion of the computer time and memory. Under
multiprogramming, separate programs may be written to process
the input-output requirements. This transfer of the data
(called spooling) onto faster I/0O devices such as disc, drunm,
or tape allowed the programs +c make the logical connection
for I/0 to cone of these faster devices. With multiprogram-
ming the overlap of I/0 and computation was permitted and
greater efficiency resulted.

The concept of a real-time system originated with the
defense installations where an immediate response was neces-
sary. A real-tine system allows a user direct interaction
with the computer for computation purposes. This interaction
eliminates the clerical details (both ex*ernal and internal)
cf the computer operation. The concept of multiprogramming

allows several stations or terminals to interact with a2

te

~
1G4

;! compiter. The Coexi i

tence O

L 2 e m e e e o e

0th Teal-time programs

(Al

b

(4]
=h
[}

(]

and normal batch processing is therefore allowed in large ma-
chines,
As this computer system evolution occurred, many poten-

tially incecrrect assumptions were made. Insufficient analy-

10

sis may have contributed to some of these incorrect assump-
tions, but many of them have been made on the basis of intui-
tion alone. As these incorrect assumptions were uncovered,
more emphasis was placed on the use of deterministic and
probabilistic measurements.

As computer systems have become more complex, evaluation
of these systems has become more difficult. Many new ele-
ments must be considered as part of the computer systen.
Since one objective of an cperating system is to aid progranm-
mers by providing cemmon routines, cemputing time must be
spent to allow generality. Multiprogramming requires large
guantities of information about each job. This information
is used to define the transfer between jobs and to start and
stop each job. Updating and maintaining this job information
requires an additional part of *he available computer time.
In this case, a tradeoff occurs between the capability of tha
computing system and the manual or semimanual procedures suar-
rounding the computer. As the computing system makes more of
the decisions in the scheduling, allocation of resources, and
operation of these resources, time is required which is no

) R -

ionger available t¢ the user. Evaluation krust th

-on-

1y

— P .
Leloy

[udl

sider many more parts than ever before, becauss these proce-
dures are a part of the considerations in a large system.
In any discussion on computer system evaluation, the

characteristics which are to be compared influsnce the evalu-

11

ation. Historically, computers were divided into two
classes, scientific and commercial. Scientific computers
were measured almost exclusively in terms of their arithmetic
spead. Certain discrete operaticns such as add, subtract,
multiply, load, and store were considered to be the main ac-
tivity of scientific operations. The tacit assumption that
arithmetic processing was the dominant function for consuming
time was the justification for this approach to evaluaticn.
Transferring data into and out of primary storage was assumed
to occur crly a small fraction cf the time,

In the commercial processing field the input-output ca-
pabilities were considered the most important factor. Deep
comritmenrts to card-processing techniques, where literally
tons of data had *o be processed led to assessment of systenms
in terms of their record reading and writing rates. 1In fact,
the first commercial processors were little more than colla-
tors and sorters.

Presently, no clear division of computers is possible.
Jobs which are structured much like a "commercial" applica-
tion are now found in the "sciep+ific" computers and vice

VeISa. Th

)

- L1 __*_ _ . L I A Y
SopruLrLany)L Lhe Ulstuliuct

icC

-~ oo
Qi pevween scLent

| i

[}

-
Pt
t=h

and commercial computers has complicated the task of perform-
ance evaluation even further. Evaluation techniques must now
be made general enough to cover both types of computer. 1In

fact, the +two types of computer have merged into only one,

12

the general-purpose or universal computer.

Why REvaluate ?

The nature of the widespread interest in evaluation is
difficult to classify. Users need a basis to compare compet-
ing proposals, a basis for acceptance testing, and ways of
selecting and describing systems tasks. Users must also be
able +o estimate the running time and costs of new tasks for
planning purposes.

A common problem is the determination of a new configu-
ration. Should new devices be installed? Will a faster CPU
be utilized? Is more secondary storage necessary? Will data
channels, additional I/0 devices or anything else add to the
cost-effectiveness of the system performance? These questions
are among some of the things users would like answered by
system evaluation. System programmers and computer designers
are faced with the protlem of determining the periorwance of
systems under developmert. During system dev2lopment, evalu-

aticr is an important aid to the system designers both for

P Y NNy U [, U T < B P | —
VeLlllcdatioll O1 Tihe pellorhikalice arnda

oT dire

et

(tY

mining new features to be added. Consequently, performance
evaluations are extensively used in both software and hard-
ware development. An example of this type of developnment

evaluation may be found in the Multics project described by

13

Saltzer and Gintell (20). The evaluation system used in this
project consists of both hardware and software devices com-
bined. The important hardware features described are a high
resolution clock capable of reading accurately to a
microsecond, an internal memory cycle counter, and an
externally driven I/0 channel which permits another computer
to access the computer under test. Most of the software
evaluation tocls in the Multics project are concerned with
the measurement of time spent in certain sections of the ex-

perim

(g

ntal system, or with the nunmber of times a particular
event occurs during program execution.

Another application for system evaluation is in the
field of system optimization. Each computer installation has
a unique distribution of job characteristics as determined by
their users. Proper system parameters must be chosen teo
optimize the system performance for the user community at
each installiation. Job scheduling algorithms, page swapping
(in a virtusl memory), time-slicing, and priority levels ars
some of the potential areas to be modified during systen
optimization. These items mav be part of the normal systen

-2 = o s e mam
aillurzitance alid icay Leoyu

— _—1 . - 3 .. A - - — L —
lLe Lilallye durw Tu a Lilahys Lil uavw

Jte

users' jcb characteristics. Optimization of individual pro-
grams such as compilers may be contained in this application

cf evaluation, as well as the gross system characteristics.

1

The selection and acquisition of new equipment is anoth-
er area where system evaluation may aid a computer installa-
tion. Often evaluation can identify a potential problem or
deficiency before it becomes serious. These problems may be
related to an equipment deficiency which can be corrected by
the addition of more or different devices. These deficien-
cies may require some additional evaluation or testing to de-
ternmine the proper actions, bhut the time may be available du=
to the foresight given by the evaluation.

Fvaluation may also be vsed to determine the reslative
merits of several competing philosophies. An example of this
form of evaluation is described by Sherman, et al. (27).

This paper describes the evaluation of several CPU scheduling
philosophies. The evalunation is a simulation which produces
a compariscn be*ween the scheduling techniques. Theoretical
results for other computer processes may also be testad hy
suitable evaluations.

In summary, evaluation is a desirable activity for com-
puter systems personnel, because it provides better insight
irto the operation of the system. This insight may then be

i b

- S L R L e P T e o 1
dowu LL vpLiiliaze Liuwe vpweLatl

e S5YS

P ~c L
ol oL U

441

- mt .
L Ws in reyuLyres

j=te

ment for evaluation leads to a desire to provide a systematic
method for evaluation. The remainder of this dissertation

describes a systenm which may fulfill this requirement.

15

CLASSES OF EVALUATION

Evaluation falls into twe primary classes according to
Drummond (5). These are availability and work capability.
Availability expresses how much of the time a system (or part
of a system) is or can be used for productive purposes. Work
capability is an assessment of a system's ability and effi-
ciency as applied to performing an intended function.

Availability may be defined in absolute terms as the
time the ccmputer is on (power epplied) minus the pertion of
that time which is required for maintenance. The reduction
of maintenance time therefore increases the availability.

Two forms of maintenance are common, scheduled and unsched-
uled. Scheduled maintenance may be planned ahead and may not
be a serious loss of availability, if the time period chosen
is during a period of low usage reguirements.

Unscheduled maintenance can be very critical because it
is unpredictable and ray last for ar indeterminate length of
time. Unscheduled maintenance is directly depend2nt on the
reliability of the entire system. The reliability of the

: a1

system 1S dependent on the quall

¢
)

— - L u
L

- - £ 1. —_— - — - —— - -~ = 3
¥y Of the Ccomponenis and tad

{

construction of the computer. In this area, consideration
nust be given to the fact that some failures may be transient
in nature, so error correction and error re-try schemes may

extend the availability of the computer.

16

Additional methods of decreasing unscheduled maintenance
time are dependent on by-passing the failing part or parts.
Multiple or redundant parts may be substituted for the
unavailable part until a mcre convenient time period allows
the bad part to be replaced. This redundancy is usually only
used for highly critical applications and is usually quite
costly.

A similar scheme of increasing availability involves
modification of the system so that the work which does not
require the failing part way still be performed. This allcws
partial availability to the computer so some work could still
be performed.

Work capability is measured by many forms, with the
three most popular being job time, throughput, and response
t+ime or turnaround time. Job time is a measure of the time
it takes to process a particular application. This measure
of job time does not commonlv account for the external cleri-
cal portion (the handling of the input decks and the output
listings) of the job. To determine the relative performance
of a computer system, a synthetic job has been formulated.

This job is described

j as a %g

- 21
atly

fohd
[S9]

. -.. .Y 3 .9 r]
)Y BUucnholZ

|
L

simplified file maintenance procedure". He postulates that
it can be "programmed with a modest effort in different lan-
guages and on dissimilar wmachines, so as to be run and timed

cn each of the systems®. This job exercises both the CPU ard

17

the major I/0 devices of a computer. Naturally the data ob-
tained is valid only for this particular job in the particu-
lar environment in which it is executed. 1In another job in
another environment, the results may be considerably differ-
ent.

Throughput is a generic term which relates in some way
to doing the total work of the system, rather than any single
job. In a multiprogramming environment, the number of djobs
per day may be cited as a measure of throughput. The use of
throughput as a rzlative measure estimates the performance of
a computing system when it is measured against some base com-
puting system. Relative system throughput is defined as the
ratio of the time of computation for a given load on the base
system divided by the time of computation for the same load
cn the new system. Naturally, the systems to be compared
must have similar or equivalent facilities or the comparison
will he invalid.

Response time, a term generally associated with real-
time systems, is usually measured in absolute terms, 1In
terminal-oriented systems, response time refers to the anount
of time that the computing system takes to react te Terminal
transactions. In other real-time systems, response time can
indicate the time needed to identifv, load, and executes a
critical function. Although no response is necessary, con-

pletion of some critical processing may be required. Re-

18

sponse time calculations must be well defined within the
context of their intended use.

Turnaround time is generally associated with batch proc-
essing systems to imply the same relative time period as re-
sponse time. Turnaround time is usually defined as the time
between turning in a job at a station and the time that the
results are received. Turnaround time does include the tinme
required for the external clerical handling necessary to exe-
cute +he joh,

Acceptahle computer performance pust be a mixture of
these factcrs. The programmer is usually most interested in
job time and turnaround or response *time, The job time is,
of course, directly related to the turnaround and response
time. The effectiveness of an individual programmer may be
partially dependernt upon the turnaround time. Job time, on
the cther hand, is a measure of the cost of an individual
job. System programmers and operations personnel are proba-
bly more concerned with the throughput, because this is a
measure of the number of people the computer is serving.

Rasically, programmers or users are interes+ted in the factors

| S P
L

L -~ U N 4 2 - — -~ L = e m e e e e A
LilaLr ai [V \

—~ L -
"NELT JODS5; wWn

Te Sysvelm programimers ant Op=ra-

1]

-C

i)

tions personnel are more intsrested in the total systen.

19

TYPES OF EVALUATION

The three primary types of evaluation are classifica-
tion, comparison, and time estimation. Classification is
probably the most popular form of evaluation, although eval-
nation of a set of attributes or a single attribute by clas-
sification may be misleading. Classification may investigate
attributes such as capacity of main storage, storage cycle
time, or add time, and attempt to tabulate computers into

classes based on these properties. Oft

D

n vague terms such as
small, intermediate, and large systems accompany =2valuation
by classification.

Comparative evaluations usually designate one system as
a base against which all other systems are compared. Like
other types of evaluation, comparative evaluation often con-
siders only the CPU and processcr s*orage. The interdepen-
dent methods of the instruction mix ard the kernel have been
develcoped for comparative evaluationr., The mix method assigns
a weight to each instruction or group of instructions. The
weighted instruction time can be used tc compute an average
instruction time for compariscon purposes. The Kernel method
examines the central or essential part of the application
under study. The most frequently used portions of an appli-
caticn are determined and +hese pertions are programmed in

the various instruction sets. Continuing this to programming

20

the entire job stream would allow a comparison of systen
throughput.

Time estimation involves estimating the time involved
for required functions or operations. The comparison then
could involve entire jobs and all system components. The

time estimate may or may not be the desired end.

Analysis of Evaluation Methods

As Cal

je

ngaert (3) has shown, the above mentioned types
of evaluation have proven inadequate to produce meaningful
results in oresent-day computers. The simplifications and
approximations used can cause large discrepancies in the
results. Application of these erroneous measures may then
incorrectly bias the opinions of users.

The first method of evaluation was the classification of
instructions and other absolute data items. This form of
evaluatior is an over-simpiification of the problem and does
not consider the additional structure of a viable system. An
example of this problem is the comparison of memory times.

1 - -

1L Memory

i~h
]
'
t

ok

fobe

P et o e e R e i e A &1 Amatsr & AL nEArmads n
WD aiw LvipalLcuy L Q¢ ! 2 L f

-~ ~
ML wiLimQ xi

[WH

G

-4
0
o]

o

ransferred per access may later cloud the comparison. A
ccmparison of the amcunt of information transmitted per unit
time (bandwidth) may be more accurate, but the other factors

in the memory may still enhance or diminish the significance

21

of the overall memory speed as a measure of the system.

Instruction time comparison can also be influenced by
the other parts of the computer structure, The add instruc-
tion is a common instruction for comparison., It must he rec-
ognized that no one instruction can adequately describe a
computer system, but even if this one instruction is consid-
ered interesting, are the word lengths equal in both ma-
chines? 1If the machines have character addressability, what
operand length should be chosen and why? The addressing
schemes for different machines may vary radically, so wvhat
effect will addressing have? These are a few of the problems
involved in instruction time comparison.

Calingaert has discussed some of the problems with the
instruction mix and kernel methods. The instruction mix
techrnique must be based on a measurement of the execution of
several programs through a large number of instructions, and
is therefore dependent upon the structure of this original
CPU. The coefficient which weights each instruction tinme
suprosedly represents the relative frequency of instruction
occurrence. As the s*ructure of the CPU varies from the

-~ owA T mm mvmem 1 3 oma
Doanu LT OO avpLiva

u

'wiginal, the instruction wmix becom=s le
ble. To illustrate this effect, Calingaert cites an experi-
ment performed with a group of experiernced system enginsers.
"Its members were asked to specify the time in microseconds

cn System/360 Hodel 40 for the compare class of instructions,

22

given only the fact that the original mix was based on the
7090, where the instructions in that class were CAS and LAS.
The ten answers ranged from 11.88 to 30.66 with a mean of
21.5 and a standard deviation of 7.0".

Kernels, like instructicn mixes, are not free of disad-
vantages. The problem of providing equal programming skill

for the different CPU's is a practical limitation in both

r

persconnel requirements and implementation time. The proper
weighting cf two or more kernels can also be a problenm.
Calirgaert (3) again cites a difference in performance ratios
of one CPU compared agairst another. Different kernels
yielded ratios as high as 9.5 and as low as 3.3. There is
strong evidence that all presently identified kernels are
atypical and typical kernels may not be definable in the gen-
eral sense.

The time estimation technique relies heavily on the
thorough understanding of the processes involved and requires
careful analysis of available data. Verification of the
results depends on the subsequent measurements of the trans-
plarnted system. Time estimation may be performed by a simu-

YTadann AF A cvumdAm Twn 4+4Ls~
a4 Lo+ X v

S ~a o~ PR AN nwmar~wy ~AF 4L
vl Ll SySTTihie [t St I Cas -1 L (o

h ¥ oted ~
T avLvu Lanes

1]

14

result is dependent on the knowledge cf the designer.
A recent survey of performance evaluation by Lucas (13)
rates several techniques for evaluation in terms of three

main purposes. These three purposas for evaluation are se-

23

lection evaluation, performance projection, and performance
monitoring. Selection evaluation is the process associated
with obtaining new equipment or programs which already exist;
Performance projection is that part of the decision activity
which preceeds the design and implementation of both new
hardware and new software; Performance monitoring is the
constant measurement process used to evaluate the performancs
of a production system. Rach of the eight techniques (in-
struction times, instruction mixes, kernels, models, bench-
marks, synthetic pregrams, simulaticn, and monitoring) is
rated in terms of its suitability to the purposes for per-
formance evaluation. The most satisfactory technrnique is pos-
tulated to be simulation, but simulation has drawbacks in the
cost of running the simulation, the validation of the simula-
+jion results, and the question of the necessary problem of
the level of detail required to produce valid results.

Many additional techniques o€ evaluation have been de-
scribed. An excellent bibliography of computer performance
analysis techniques has been compiled by Miller (15). The
references in this bibliography cover all aspects of perform-

- it

—4 2 —— -
SLinys Ol Ln

‘-lo
hil
L]
[44]
i=h
q
-
q
E
1
y
}..
"

-

ance measurefsnt. Itemized

cluded within particular areas of performance =avaluation are
also included. The bibliography included with the article by

Lucas (13) is also comprehensive and current.

24

EVALUATION DATA

In designing an evaluation, consideration must be given
tc the data which must be acquired. The choice of the data
to be collected greatly influences the evaluation because
systems are not the same. One system may be weak in the same
area that another system has its strength. If the extremes
of the systems are tested, *he evaluation loses validity bhe-
cause the environment is noc longer typical but nust be
artificial., PRepresentative information obtained from a com-
plete jobstream is better for the evaluation, but the volume
of data makes it difficult to analyze. One way of overcoming
this problem is to make use of a benchmark program. Drummond
(5) defines a benchmark as a "particular programmed procedure
with some associated data chosen in such a way as to impart
meaning to the origirator of the benchmark". For the scien-
tific problem, matrix inversion is a typical example of a
benchmark. Another alternate jocb to be used as a benchmark

is the synthetic job discussed earlier. With these prograns,

gross measurements of time might be enough upon which to base

afn €Va

|~

uation.

Two main classes of data acquisition are common: hard-
ware measurement and software measurement. Software measure-
ment is able to obtain data related to individual jobs and

provide probabilistic data to indicate usage distributions.

25

Certain data which is job-oriented may be obtained only by a
software monitor which may be tailored to fit the system. On
the other hand, hardware monitors do not easily acquire
system related information, but rather describe the hardware
utilization of the system. Certain hardware related informa-
tion such as instruction usage distributions may be gathered
most conveniently by a hardware monitor. 1In addi‘ion, hard-
ware monitors can be attached so that the rest of the systen
is nrot affected by the measurement.

Scftware technigues generally intercept the normal flow
of execution at particular points where information is
desired. The complexity and duration of the interception
depends on the information required and the information known
at that point. Locating the necessary information may re-
quire extensive searching thrcough memory. Intimate knowledg=2
0of the system being measured is necessary to obtain the
proper information at the proper point. Examples of this
technique are given by Starley and Hertel (29), Stanley (28),
and Scherr (22).

Stanley and Hertel (29) present a measuresent system for

1
[§

a2
I ~

—_—-n — —-
Ieal—-Time 5YS

A
[ta]

system collects data designed to provide perfcrmance measures
ard to allow testing of *he system for the expected loads
during an Apollo space flight. This data is collected by a

software monitor which records time in terms of an accumu-

26

lated total time for each function. Data are not in general
associated with a particular job since all jobs are equally
important, but certain tasks are separately monitored.

Stanley (28) presents a system in a later article which
measures certain parameters which are presented in a later
patt of this dissertation. 1In this article, the data is pro-
duced as a part of the job accounting svstem used in a real-
time system. The operating system was modified to perform
this accounting activity by adding computer instructions in
those areas where data collection was necessarv. This is
then a permanent collection device which does interface di-
rectly into the systen.

Scherr (22) also presents a monitoring system for anoth-
er real-time system. The definitions used for this real-time
systen suggest a different set of parameters to be neasured,
but otharwise the system resembles the job accocunting systen
presented by Stanley.

2 second method of software measurement is the
"spapshot" approach. At regular intervals, selected portions

of the ccmputer memory are dumped to the collection device.

Mes “ Ad s mndImal mAadlAAds &
©° l!\j L“AQLLaADLALvaL WT v a -~

-~

+hAaec

~ ~ Aad&a
7 - AANIAOR - A

[ty

23
n

appiyi a2 set of dis-
tribtutions may be produced which represent the measured data.
This sampling of the system produces a probabilistic rather

than a2 deterministic measure of the desired data.

27

Hardware monitor devices generally sense electrical
signals at critical points in the CPU to determine what is
happening in the system. These signals must be decoded by
the monitor, which may be as complex as a small computer, and
may have an interactive or immediate display. Perhaps the
most dramatic attribute of the hardware monitor is its
ability *to obtain data reflecting the occurrence and duration
of many events simultaneously. Description of a hardware
monitor is given in +the paper hy Bonner (1). This monitor
may be used to measure the activity of the CPU and the I/0
channel activity. This information may be used to classify a
system as CPU bound or I/C bound and also indicate I/0
channel overloading. 1In addition, this monitor may be used
to monitor the time spent within a particular protect key
which may be associated with a particular job. Thus, certain
important jobs may be monitored.

After data are obtained, a certain amount of analysis is
immediately pcssible. Graphs and charts may be prepared such
as those by Scherr (22). These graphs may describe the char-
acteristics of the system and the job stream into the systen.

N ala bl
riLvieo y

213 L AAanaads
bt Q o

cy
response time are typical of the useful measurements. 2
careful examination of these figures may lead to necessary

answers. All the other methods of evaluation previously gde-

scribed may be used to extract the maximum possible informa-

28

tior. from these data.

Required Data for Evaluation

A minimal set of data is necessary to adequately de-
scribe the computer system which is being evaluated. This
minimal set may vary due to the characteristics of the systen
being studied but certain parameters should be common to all
systems. These parameters must completely describe the sig-
nificant characteristicc of the system, including bo+h batch
processing and time-sharing applications.

In an article describing an experimental simulation of
System/360, Katz (11) describes a set of parameters which
represent each job and each job step. The parameters

pertaining to each job as a whole are:

(1 Job identification number.

(2) Time job is submitted.

(3) Station at which job arrives.

“) Job priority.

(5) Keypunchirg time.

{6 Number of job steps.

) The device class which specifies the input

devices that can service this job's input.
Parameters that characterize each step of the job are the

following:

29

(1) The core storage requirement.
(2) The base time for the job step, i.e. the minimal

execution time for the step.

(3) The programmer specified time limit for the job
step.

(4) The number of data sets belonging to the job
step.

(5) Whether the job step requires setup.

Parameters that characterize each data set belonging to each
jcb step are:
(N The device class whose equipments may be assigned

to the data set.

(2) The storage which needs to be allocated feor the
data set.
(3) The programmer's estimate for the quantity of

data in the data set.

() The actual gquantity of data in the data set.

(5) The variance of the data rate to and from the
data set.

(6) Whether the volume assigned to the data set needs

to be retained for subsequent job steps.

(7 Whether the volume assigned to the data set is
orivate, i.e., must not be shared by any other data set.

(8) An identifier of that data set, if any, to which

this data set has a unit affinity.

30

(N Whether the data set is new (was generated during
the job step), old (was in existence at the beginning cf the
job step), or modified (was developed during the job step by
modifyving an existing data set).

(10 The output class to which the data set belongs
(relevant only if the data set constitutes output).

(1 The disposition o be made of this data set.
Possible dispositions are: sysout, an output data set; tempo-
rary, hold the data set for the duration of the entire job
rather than for the current job step only; delete, destroy
the data set following the current job step; keep, hold the
data set indefinitely - until a subsequent delete.

In this set of parameters very little information is
available on the system activity which is also present in all
computer systems. A later article by Stanley (28) includes
more system information. Stanley's choices of parameters are
divided intoc two classes, job statistics and step statistics.
The class of job statistics includes:

(TOTAL COUNTS)

(N Jobs run.

{2) IPL®s {initial program 1oad) necessary.
(3) Abnormally terminated jobs.

(4) Operator accounting messages.

(5) Background utilities.

(6)

31

Concurrent initiators.

(TOTAL TIMES)

(M
(2)
(3)
(%)
(3)
(6)
(7N
(8)

CPU time for job strean.
CPU time for system tasks.
CPU time for utilities.
Syster I/0 wait time.
System idle wait time.

Job run time.

Nonjob time.

Sample time.

(AVERAGE TIME)

(M
(2)
(3)
(4)
()
The general
(1)
(2)
(3)

(5)

Job elapsed tinme.

Job CPU time.

Initiator between job tine.
Time to IPL.

Time between IPL's.

step statistics measured by
Number of completed steps.
Average steps per job.
Average steps per hour.
Average elapsed time.

Average step CPU time.

The step statistics by step name are:

M

Average CPU tinme.

Stanley are:

32

(2) Number in sample.
(3) Percent of step type.
(4) Step to job CPU time.

Unfortunately, not all of these parameters have meaning
in all circumstances. These records do have a striking simi-
larity to the parameters now supplied, if desired, by the IBHN
System/360. A facility called SMF (system management facili-
ty) is now heing offered as a part of the IBM system. This
facility records information which is considered important in
*he TBM system. Several classes of information are recorded
as individual records of variable length. Each record has a
stardard header section which includes the time of the record
in hundredths of seconds, the date, the model number of the
computer, a system ID, and the record type. The records

which describe the system are:

(N IPL record.
(2) Initial I/0 configuration.
(3) Vary online~-offline (the logical removal or addi-

tion of I/0 devices as directed by the operator).

(4) Scratch or rename a data set.

{5 Direct access volume record.

(6) Error statistics on tape volumes.

(7 Wait time (written every 10 minutes).

Records written by SMF to describe each job are:

33

@) Job initiation record.

(2) Step termination record containing: step initia-
tion time; dispatching priority; completion code; program
name; regions requested and used; CPU tinme.

(3) Job termination record containing: job initiation
time; number of steps; completion ccde; job priority;
termination indicator; job CPU tinme.

() Data set activity records: data definition names;
data set organization information; data set name; count of
accesses; device type information.

(5) Output classes and counts.

The SMF recerds are continously recorded during system
operation if the SMF option is chosen. Several levels of use
allow a variety of irformation records, but the overhead re-
quired for the SMF processing has been estimated to be less
than 3% for the worst case. The data available can be used
as a basis for accounting, so it is probable that the cption
will be chosen at system generation time for accounting pur-
pcses. This data is quite similar to the data previously de-
scribed, except the SMF records include a %time field which
identifies the time that the record was written.

Ore more set of information may also be desired. The
three sources above do not contain any information for real
time or time-sharing applications. The article by Scherr

(22) shows some of the relationships in a time-sharing

34

system, and presents some of the results of the measurements.
More detail on this subject is available in Scherr's mono-
graph (21) on the same subdject. Six distinct states of a
time-sharing system are described:

(1) Dead; no program is waiting to run for the user, and
no core-image is being saved for the user. This is the nor-
mal starting point.

(2) Command wait; a program is waiting to run but it has
not yet run for the first time. Tt must bhe loaded before ex-
ecution may begin.

(3) Working; the program is in execution.

(4) Irput wait; the program requires a line of input
from the terminal.

(5) Output wait; an output buffer is full and terminal
output must empty *his buffer until space is available for
further action.

(6) Dormant; a special ¥tz2tr where no action is possi-
ble.

These measurements are based on the basic unit of work in a
time-sharing system called the interactien., The usual form
of interaction is the sequence cf events as follows: *he user
thinks, types input, waits for a response from the systenm,
reads the response, and begins the process again. The user
is in one of two states: 1) the user is waiting for the

system to execute the program, or 2) the system is waiting

35

for the user, These two states correspond to “working" and
"input wait", respectively, so an interaction may be defined
as the activity which occurs between two successive exits
from either "working" or "input wait®,

Tn this environment the following measurements were
mades

(1) "Thick" time of the interaction. The terminal or
input wait part of the transaction.

(2) Program sizes.

(3) Processor time per interaction.

(4) Interactions per command.

(5) Pesponse time. The working time of the interaction.

(6) The number of concurrent users.
These measurements correspond to some of the measurements in

tte batch system. The time-sharing system places the

4=

gqreatest importance on response time. This single measure-

ment is the most requestel itzm in a time-sharing evaluation.
Other considerations are necessary for other types of time-

sharing systems. If a paging system is studied, for example,
the paging algorithm needs study. The frequency of fetching

a new page is then an important statistic.

36

A SUFFICIENT SET OF MEASURABIE PLKENRTERS

The consideraticns abtove have shown some of the parame-
ters which are used in the area of system performance evalua-
tion. A set of these parameters which is all %¢hings to all
peoprle would be impossible to formulate. A set of parameters
which will satisfy most of the requirements should be much
easier to assemble. Some parameters are obvious, but perhaps
all parameters should be discussed with their uses.

Starting with the job oriented parameters, the first
most obvious parameter is job and step CPU time. These two
parameters are nearly redundant except for one difference.
The job CPU time should include the time required for step
initiation processing, and data set allocatisu. These param-
eters are useful in determining the CPU time distribution for
an installation. Anv evaluations of CPU utilization must
have information on the distribution of CP!Y time being used
per job.

Real time, wall clock time, or elapsed time is a measure
of the time the job resides in memory. The ratio ot real
time to CPU time can be considered important in the measure-
ment of I/0 blocking and buffering. High real time to CPU
time ratios indicate a poor buffering factor for I/0. The
real time is also important in determiniug tie number of jobs

which can run through the system in a given time perioa.

37

Required menory space is important in estimating the
number of concurrent jobs which may run. If a hierarchy of
remories is available, the measurement should be made for
each memory type. Information on the amount of memory
actuelly used can also be used to make estimates of optimiz-
ing the jobs being run. Users also tend to be interested in
this information. Strategies of running jobs of certain max-
imum sizes at certain *times depend on knowing the memory dis-
tribution information.

The name of the program oeing executed may be a valuable
piece of information, The distribution of languages being
used can point to dzsirable deveiopment projects. Optimiza-
tion efforts should be directed toward the highest used pro-
grams.

The number oY steps in a job reveals how many times the
job had to get ancther program and its associated space. In
most systems the i:iti-tion ¢f a job step is a non-trivial
process which involves interpreting the JCL (job control lan-
guage), loading a program, allocating both secondary and pri-
mary storage and other housekeeping. The number of steps,
therefore, determines this effect.

Job priority determines the system action on the program
in terms of allocating CPU +ime “o0 the job. Priority levels
allow faster system recsponse for high priority jobs. Job

priority may also indicate why a particular job required much

38

less time than another.

The job step completion condition indicates the reason
for job completion. If abnormal completion occurs, the data
should be analyzed differently. If a large number of users
get the same completion code, some action may be called for.
Either some form of system problem has shown up (usually cer-
tain completion codes indicate these system problems), or the
users may need education on the causes of this particular
code.

Submittal time studies may give some indications cf cp-
erational changes to be made. Submittals may come in large
batches, which may be the most or the least optimal, depend-
ing on the environment. Comparisons might also be made on
the sizes of jobs at certain times of the day.

Data set information is valuable in evaluating the usage
of the I/0 devices. This information may be the most diffi-
cult of all to cbtain, because it is a dynamic measurement of
unpredictable actions., The obvious place to obtain this in-
formation is in the I/0 supervisor of the system. Additional

information on the data set, I1/0 device, and perhaps the time

~“F
T

cf *he acticn wouid often be convenrnilent. AS a matter of

I

fact, one of the interesting factors about data set activity
may be the distribution with time. Certainly, time distribu-
tions on terminal devices can provide the measurements needad

for time-sharing evaluation.

39

System oriented measurements must also consider data set
activity. The balance or distribution of the systen data
sets is important in tuning a particular system for better
performance. Certain operations on data sets such as cata-
logs, procedure libraries, job libraries, and other systenm
data sets need monitoring.

One activity which should produce records is the initial
program load (IPL). At this time of system initialization,
the system is probably inspected to see what is attached and

operational. This initial configuration should be recorded,

=

preferably automatically. After IPL, any changes in the con-
figuration should also be noted.

System time measurements would also be very interesting
if available. Several time measurements could be mentioned.
System wait time could be defined as the time the CPU is
idle;: It could also be further broken down into times when no
work is available and times when the CPU is waiting for I/O
conpletion. Another measure might be the system CPU time.
This is very difficult to define, since much of the tima the
systen is doing its werk for some user, if that user could be
identified. In most ceses, the system is not pregrammed o
find cut who to charge this time to, because the search would
take pore time than the operation reqguired.

A set of parameters which is vostulated to be sufficient

to describe a system is given below.

(1)
(2)
(3)

(4)
(5)
(6)
(7
(8)
(9)

(M
(2)
(3)

4o

(JOB PARAMETERS)
CPU time; by step and by total job.
Real time.
Memory space; by step, broken down into
hierarchies.
Step program name,
Number of steps.
Job priority.
Step completion cendition.
Submittal tinme.

Data set activity.

(SYSTEM PARAMETERS)
Data set activity.
IPL configuration.

System time measurements.

types or

41

HOW TO USE THE DATA

After data are collected from the system which is to be
evaluated or to be used as a base for evaluation, the data
must be properly used. Absolute forms of measurement are of
some value, but generally the scientific method is prefer-
able. The classical trilogy of hypothesis, experiment, and
mcdification of hypothesis is a desirable form of evaluation.
Absolute evaluations of the data should not be ignored, but
only experimentation can prove or disprove a particular
hypothesis. This experimentation cannot realistically be
performad on the production system, so some form of simula-
tiorn is desirable.

Evaluation of a systenr may now be viewed as a three step
process where first, data are obtained by a measurement
process, second., these data are manipulated and summarized,
ard third, the observations obtained from the first step are
used as input to a system simulation., FEach step of this
process is an evaluation by itself, but the total process
provides a direction for optimization and allows testing
pricr to commitment to a particular system ({(hardware or soft-
wvare). This series of operations produces data which must be
manipulated so that it has meaning to the user. The process-

ing to provide this meaning is described below.

42

If the measurements descrihed above are the base for ths
evaluation, several distributions will be of interest. Dis-
tributions of CPU time, real time, and total data set activi-
ty should be drawn. Correlations between these variables
should be checked for relationships. These correlations may
indicate device or channel contention or improper management
of resources. Memory space could be presented as a bar graph
or histogram since discrete values are involved. The number
of steps could also be presented as a histogranm.

Presentation of the system-oriented parameters may be
viewed in more than one way. The nminimum detail required
would be a set of totals summarizing the amount of CPU time
used by the system, and the total I/0 activity by unit ad-
dress. To determine the unit usage, the individual unit
totals are sufficient, but to determine a particular data set
order on the unit, date set veferences are necessary. Excep-~
tiorally fine detail would even indicate the proper ordering
of information within the data set. This extent of detail
would be voluminous and difficult to analyze, so summaries
are necessarv.

One possibly interesting preSentetion might be a time-

[l

data set graph which would present ths data set activity as a
function of time. Unit requests could be presented as tinme
dependent entities, TIf jobs could be associated with each

request, an I/0 activity - time relation could be shown

43

during the course of a joh., Many measurements of these data
would show any correlation in these variables. Distributions
of I/0 activity within a job could then be cited for analy-
sis.

The only process which can predict and nmeasure the
ctanges in the system in terms of throughput or turnaround
time without implementation of these changes is simulation.
Simulation has traditionally been used as a means of predic-
tion. Many references can be cited as support for simula-
tion. 1Among these, Katz {11}, Seaman and Soucy (25); and
Nielsen (16) discuss simulation in some detail.

Katz describes a job generator to produce a simulated
job stream for system simulation. His job stream is produced
by a simulation language program which might be called a sinm-
ulated programmer. The output of this program is then used
as input to a system simulator. Presumably, this system sin-
ulation is variable +o represent different conditions. The
ac*ual language used is Simscript and a macroscopic simula-
tion is produced for the System/360. Extended events are in-
cluded such as messenger pick-up and delivery. The simula-

A A & s
10O PLOGWT) ime,

I

LuternaraAaitnd 4
LQLaLrvuuna oo

S wmeasure S
throughput, hardware utilizaticn, software utilization, and
gueueing processes.

Seaman and Soucy describe a simulation which is much

more hardware oriented than software. This simulation is

4y

produced in an IBM proprietary language which has many fea-
tures which are easily adaptable to hardware simulation. A
discussion of an operating system sub-model is given to show
how such a simulation may be written.

Nielsen's work is in the field of time-sharing computers
with page structured memories. The language chosen for this
simulation was Fortran because of its nearly universal avail-
ability. A study of the IBM/360 model 67 time~sharing systen
is presented with this paper and several different configura-
tions are tested. Tn this study, as in the previous two, the
job stream used to exercise the system was obtained as a
series of approximations.

The concept of using a set of measured data for the
input to a simulation model is presented by Cheng (4). This
attempts to solve the problem of making too many simplifying
assumptions. It also removes the problem of approximating
the job stream, since the job stream is a part of the input
data. This concept of usinrg a se*t of measurements or
jobtrace as the input is also a part of the Advanced Multi-
precgramming Analysis Procedure (AMAP) as distributed by IBM
().

As in all simulations, the simulation must be very care-
fully formulated. Simulation must be carefully controlled to

avoid the problems of incorrect results. In simulation more

than anywhere else, incorrect answers may go unreccgnized.

45

Simulations often produce information which is no*t well un-
derstood, and cannot be cross-checked. 1In the case of the
trace information, the cross-checking of the simulation may
be achieved with the trace data. Of course, one data point
for checking is not really conclusive, but some changes
should produce predictable results which can also verify the
correctness of the simulation.

A simulation of a computer system allows the iterative
process of hypothesis experiment, new hypothesis, more easily
thar any other scheme. 1A modular simulation of devices
should be possible to allow simple substitution of various
components, A trace-driven simulation should provide all of
the goals of evaluation previously stated, if it is initially

properly designed.

Summary ~ Part One

Examination of evaluation techniques has sheown that many
of the traditional methods have logical flaws which may

invalidate their conclusions. Since evaluation is a valuable

.y s
aRATEIANn
e e A VA N e oW

tool for people interested in computer narfermance,
al study must be devoted to the problem. The key to perform-
ance evaluation appears to be a thorough understanding of

what systems are and hcw they operate. To better understand

systems, more measurements of their characteristics are nec-

46

essary.

A proposed set of parameters is presented for considera~
tion in evaluation efforts. The first requirement for system
evaluation is the measurement of system requests and acticns.

Proper aralysis of the measurement data is the next step
in system evaluation. Many valuable hints may be discovered
with no more than this data, Improving the system perform-
ance may be based on these measurements.

Finally, predictive information may only be cbhtained
reliably by the simulation of the system. It nmust be
emphasized that the preferred form of simulation should use
as much data as is available. TFor this reason, a trace of
the computer activity is suggested as input to the simula-
tion.

In summary, the system suggested by these preliminary
studies is composed of three parts. The first phase is a
software monitor system to collect microscopic data to de-
scribe individual jobs withir the jobstream. The second
phase is a data manipulation phase which has two purposes:

First, to tabulate and summarize the data produced by the

h

3 - 1N - a R + - A
"irst phase; and sscond, to organize and prapare the data for

=

4

a simulation model. The third phase is a simulation of that
system which is to be tested. The input data is obtained
from the first two phases and is sufficiently detailed to

provide a complete representation of the jobstream. The

47

simulation mav be modified to change the characteristics of
the model system and therefore, will allow testing of hypoth-
esis, followed by further modification according *o the test
results.

I+ is clear that measurement of computer systems in both
laboratory and production environments is likely to increase
in importance. In evaluation and prediction, measurement
should become an extremely important part of the total

picture,

us

PART TWO,

THE MEASUREMENT OF DATA

49

INTRODUCTION

To verify the measurability of the parameters considered
sufficient for system evaluation, a series of sxperiments
were performed on the IBM/360 model 65 of the Iowa State Uni~-
versity Computation Center. This computer is a typical
medium-large scale computer with 512K bytes of high-speed
core memory, and 1 megabyte of slow-speed core memory. The
normal I/0 cornfiguration includes one 2303 drum, two sets of
eight 2314 disk drives, eight tape drives, two seven=%track
and six nine-track. The unit record devices include one 2540
card reader-punch unit, one 2501 card reader, and two 1403
line printers. The three basic types of remote terminal
devices are two model 2260 character display cathode ray tube
terminals with keybocard, one model 2780 remote card reader-
printer and fiftecen low-speed typewriter-like terminal ports
connected to telephone lines.

This hardware is operated under the 0S/360 operating
system with the MVT optior. The slow-speed memory is used in
a memnory hierarchy for supplemental processor storage. Some
of the system tasks and the time-sharing monitors reside in
nost of this memory, with a small portion of it reserved for
users. Jobs are distributed into classes determined by the
memory and time requirements of the jobs and these classes

are used as *the basis for job scheduling.

50

The availability of the complete system code and docu-
mentation allowed the necessary research and study. Even
with *his availability, several unforeseen difficulties were
encountered. Unfortunately, the measurement program is pc-
tentially more dangerous than normal programs in terms of its
effects on other jobs and the operating system. Debugging is
therefore much more difficult and must be restricted to
nonproduction time periods on a special arrangement basis,

The monitor was designed to operate as a series of
interrupt-driven asynchroncus tasks. The measurements were
selected on the basis of the projected uses, The most impor-
tant activities seemed to be the I1/0 operations and the CPU
time required for each job. These activities were chosen be-
cause they represent the limits applied to jobs executing in
the computer. Generally, the sum of +he time required for
T/0 operations plus the CPU time determines the real time for
the job. I/0 operations cause time periods during which
other tasks may use the CPU and may show contention on a par=
ticular channel. These measurements are described below in
some detail. The subsequent analysis and simulations of the

system show the generel utiliity ¢f this scheme ¢f evaluation.

51

COLLECTION OF DATA

Obtaining information on the characteristics of a par-
ticular job stream requires interaction with the system which
is runnirg the job stream. In that respect, the principle of
urcertainty is a factor. Any method of measurement will in-
fluence the information being measured, Either the influence
nust be kept as small as possible or the influence must be
known and later removed from the evaluation. If information
is available without additional measurements, this influence
is minimized. If additional measurement is necessary, *the
influence must be considered.

Some information is supplied by the operating system as
a consequence of the SMF cperations. These records are writ-
ten at all times for all jobs and thus do not abnormally
affect the normal job stream. This irfluence is a part of
the accounting system so jcbs are always influenced by the
SMF recording and allowances for this influence are already
part of every job.

Complete infermation on the I/0 activity is more diffi-

cult to cbtain. The nmeasure of activity is determined by

=

the accesses and replies to and from each unit. Accesses to
t+he unit are handled by a supervisor call (SVC). An SVC pro-
duces an interrupt in the normal processing of jobs. The

reply from the I/0 unit also produces an interrupt. 1In the

52

IBM/360 series of computers an interrupt is processed by a
swapping of the program status word (PSW). The current PSW
is stored in a fixed location in memory. Another fixed loca-
+ion contains a new PSW which is then loaded.

A measurement scheme initiated by each of the system in-
terrupts will gather data in an asynchronous manner, and will
obtain all the data. This method may then be described as an
interrupt-driven process.

Three specific operations are chosen to represent the
I/0 activity. The first operatiocn is SVC ¢. This SVC is th=
primary entry point to the input/output supervisor from a
problem program. This SVC is also known as execute channel
program (EXCP). The second operation is an error EXCP. This
SVC is called if an I/0 operation must be restarted. The
third operation is the I/0 interrupt produced by the I/0
unit. Certain cornditions may cause I/O0 interrupts without
correspording requests.

To obtair information from these sources the system must
branch to the data gathering code. Each of the three opera-

tions require slightly different procedurss. These prcce-

dures are Shown in Figure 1 as a o}

low diagram. An ipltiali-

Rt

i

zation procedure is used tc overwrite the system entry point
information., Since memory protection is part of the computer
hardware, and these addresses are in the protected core, a

user supplied SVC must be inserted into the system. The ad-

53

/0 INTERRUPT XCP
RREXCP GET FINg
START CSW TIME
TASK
INITIRLIZE {7 FIND 108
CONSTRNTS TIHE
. oCs
OEB
T8
NITIFY FIND ROE . UcB
DM [=3 Y
UFLHHTGH Tll‘l UCB ' Tla.r
. 108
INITIALIZE TCB ace
COLLECTION 88 DEB
PSK TCB
TiQT
HRIT FOR
REQUEST

,6’/Jl‘§~\ UPERRTOR vee ,:ﬁfg\ém\
h SRl t

L"glll‘t
& UL

it

IYPE~" Lz

PROGRAM NG
7

quTeuT F1X-UP REOUFST
T8 TAPL SYSTEM ouTPuT
l |
Dﬁ
(sTor) EXIT
= Nrm————

Fiqure 1. A flow diagram of the collection monitor

54

drésses needed by the initialization routine are also provid-
ed by this SVC. The data collection program then issues a
write-to-operator with reply. When the operator is
instructed to halt the program, the proper reply is given to
the program. This instructs the program to fix-up the systen
modifications and terminate the measurement.

When a request for an EXCP operation occurs, the systen
enters a section of code called the first-level interrupt
handler (SVC FLIH). The FLIH loads certain important ad-
dresses, determines if this SVC is resident or transient, and
acts accordingly. 1In the case of EXCP, a resident routine,
an address is loaded as an offset from the beginning of the
SVC table (IBMORG). The initialization section has
overwritten this address with *he address of the EXCP data
collection entry point. As a precaution, the registers are
stored on entry and reloaded on exit. The starting point for
the data to be collected is the address of the input-output
block (I0B) which is passed in register one., From this con-
trol block other control blocks are located to provide the
information required (Figure 2).

An error EXCP is another re¢sident SVC, The data start-
ing point is now the address of a reguest queue element
(RQE) . RAgain addresses may be obtained to locate all of the

required information (Figqure 3).

55

i) TIME FIAST FIVE BYTES
of 108 108+8 0GB ADDAESS 0CBOSORG
DCBAECFH | OCBMRCAF |OGBIFLGS [DCBOFLGS | | o
FF
FIRST SIXTEEN BYTES OF UGB
33
VOLUKE - IF
TAPE OR OIRECT ACCESS
Fr
T10T JOBNAME
Fr
T10T OONRHE
Figure 2. The monitor output record for EXCP

(1)

TIME

RaE

FIRST SIXTEEN BYTES OF UCB

OR OIRECT ACCESS

Ff

YOLUME - IF TAPE

FIRST FIVE BYTES OF 108

108+8 OCB RODRESS DCBOSERG OCBRECFM | DCBHACRF
0CBIFLGS |DCBOFLGS
23
TIOT JOBNRME
FF
T10T CONAME
Pigure 3. The monitcr output record for Error EXCP

57

The third type of record is produced by an I/0 inter-
rupt. The interrupt processing is designed to produce an inm-
mediate swap of the program status word (PSW). Certain core
locations are reserved for the two types of PSW's. The cur-
rent PSW at the time of the interrupt is stored into a core
location for o0ld PSW's. Another memory location contains the
new PSW to be loaded. The PSW contains a mask field, inter-
rupt codes and the current program location. When it is
lcaded, execution continues from the location specified in
the new PSW.

The interrupt handling is started by the hardware PSW
swap. The first instruction executed must be a register
storage instruction. Addressability may then be established
and the remaining registers stored within the monitor's
region. Absolute addressability must be used for the first
store. The I/0 interrup*t supervisor uses an area within the
first 4096 bytes cf memory to save its registers. The loca-
tion of this save area was obtained during the initialization
SVC ard filled in at that time., Also at that time, *the orig-
inal system I/O interrupt PS# was stored in the monritor's
region.

After +the registers are stored, the old I/0 interrupt
PSW is investigated. The PSW interrupt code contains the I/0
davice channel and unit addresses. Matching of the uanit ad-

dress with the unit control block (UCB) unit address field

58

then occurs. One of the fields in this UCB is a pointer to
the most recent RQE. This RQE is the starting point for the
required data. This information is essentially the same as
the error EXCP record (Figure 4).

When the data are collected, the registers must be
restored to what they were before the interrupt. The systenm
PSH is then loaded tc process the interrupt and processing
transfers tc the I/0 interrupt supervisor.

In addition to the I/0 data described above, datzs con-
cerning the CPU activity is valuable. The SMF records only
record accumulated time and, therefore, do not provide a dis-
tribution of the CPU requirements. The system uses a partic-
ular set of code called a dispatcher to assign CPU time to a
particular task and to later remove that task from execution.
To obtain this task time information, a modification must be
made at initialization time to the dispatcher. 1In this case,
the initialization is made by moving selected portions of the
code out of the way and bringing in new code to branch to the
appropriate location.

Two identical records are written to record the task
timing information. The only sources of input for these
records are the Task Control Block (TCB) and the timer. In-
formetion is recorded to provide the jobname, the time of

start or end, ard several flags (Figure 5).

0z

CHANNEL STATUS RORD

TINE

FIRST SIXTEEN BYTES OF UCB

OR DIRECT ACCESS

FF

VOLUME - IF TAPE

FIRST FIVE BYTES OF 108

108+8

0Cd ROORESS

OCBOSORG

DGBRECFH

DCBNACAF

0CBIFLGS

OCBOFLGS

TIOT JUBNAME

FF

TIOT OONRME

Figure 4. The monitor output for I/O interrupts

60

03 o4 RECURD T IHE 768 PTR

A8 FLAGS PSH OF RB

TIOT FIELDS

Figure 5. The monitor output for the job dispatching opera-
tions

61

The data collected by the monitor program is intended to
provide a detailed description of the activity of all the
tasks in the computer. FEach record contains at least a time
stanp, a protect key, and, 3if available, a job name. To min-
imize interference with other tasks, certain information may
be only partially computed. For example, the time field re-
quires additioral computation bhased on some fields which are
added to the beginning of the records. The proper manipula-
tion of this data produces an actual time of day for timing
purposses.

Packing the data is important because of the volume of
the data involved. The variable field length approach is
used to ensure a minimum size record. Storage of the data on
magnetic tape dictates a record size as large as possible. A
buffer size of 16,384 bytes was chosen to be written onto
magnetic tape. Two buffers are used with an exchanging
scheme to switch back and forth between then.

The data provided by the monitcr should be sufficient
for most analysis requirements. Definition of each process

is achieved by the various flags and addresses found in the

)]

moni+eor output. Although all of the data may not be relevant
to a paticular study, if all the records ara provided, then
only one run of the monitor program may be sufficient for

many independent analyses.

62

DATA REDUCTION

After all of the information is recorded on magnetic
tape, the next step is to make some sense out of it. The
magnitude and nature of the data precludes any manual opera-
tions and implies a requirement for efficient programming.

In actual fact, two scurces of input are available. The mon-
itor program produces the "micrcscopic" information on I/0
activity and CPU cycles. The system has also recorded the..
"nacroscoepic" information about each job in its SMF data.

The first operation performed is to separate the re-
quired records from the SMF data set and organize these
records into individual data set. The first record is read
from the monitor output and the time of that record is com-
puted. SHMF records occurring before that time are discarded
and all data following that +ime is processed. One SMF
reccrd type is not discarded, the IPL devices reccrd. This
record is stored into memory for later use. TIf another TIPL
devices record appears before the monitcr program starts, its

data replaces the previous data. TIf an IPL devices record

A

Iy 2

OCCurs after the monitor program sStarted, the Separation oOp-
eration is halted and processing continues as if all the
records had been processed.

A printed report is begun which will include the time of

IPL and statistics about individual jobs. Since several jobs

63

may be executing at any given time, the records in the data
sete may be somewhat randomly distributed. Reorganizing the
SMF data set at least allows some sequentiality to be
apparent in the resultant data sets. Information from a job
is produced at job end as defined by the name change in the
computer. This information is provided in the form of a
printed report showing the job name, the number of times it
was dispatched for execution and an identification number
vhich is then used for all future references to that fjob.

After the SMF data set is split inte three data sets,
the next routine in the process operates on the moniter pro-
gram data. The disorder of the information in the monitor
data is even more extreme than the SMF data. Data must be
recorded within the program storage to enable a logical
matching with the various measurements. For this reason,
certain variables are input as cards to complete the systen
definition. Accumulation of totals is done within areas
which are set up using the IPL devices record information.
Each unit is represented in alphabetical order within this
SMF record so a simple transfer is possible.

= heem L mL -
3 LY 1LOULMND. 1nc

1

The output of the program is produced
first is the printed report which was started earlier. A&s
2all of the informatiorn is read, statistics can be produced on
various parts of the data. The first information written in

+his phase is the job summary for the completed jobs as noted

64

above. These records are written in the order in which the
jobs complete, as they conplete.

The second part of the listing is data to define the
time period for the measurement, the total number of records,
and the distribution c¢f the records. This part is essential-
ly a statistical description of the records themselves. This
information is provided to give an indication of the statis-
tical validity of the data and to date the data so that the
confiquration might be remembered.

The third part of the printed listing is an I/0 activity
listing by unit number. Fach unit is listed and the total
number of each type of record is listed behind it. This
listing may be used to show which units are being used the
most. Additional information is recorded on each direct
access I/0 operation which provides the address of the opera-
tion on the device. This information may be used to produce
a histogram of direct access device addresses and the
distance traveled between accesses.

Finally, the printed listing contains the job informa-
ticn for the jobs which are unfinished. This listing

= A o~ - %" had LY - = % . o= X = - - - - e 2 . . —— - —
udes all O the Juus WRiCh are permaneni 1n the sSystem

-4

inc
such a2s writers, readers, and teleprocessing programs. Also
in this list are the system requests and tasks, and the

system wait time. The monitor program will also appear in

this listing.

65

A second form of information is produced at the same
time as the printed listing is created. Some graphical means
of presenting the computer activity is considered valuable,
since the magnitude of the data is so great., The form chosen
is *c plot line segments for each period of time that & par-
ticular resource is in use. This form allows a pictorial
representation of the overlap of I/0 activity and CPU activi-
ty. 1In practice, the CPU activity is broken up into jobs and
the lines are labeled with the job number. This schenme
allows a potential irvestigation of job activity within that
job.

The problem with graphing time periods is the small mag-
nitude of the basic time unit. Since each time unit is ap-
proximately 0.016 seconds, many time units are contained
within a short period of time. If one second is chosen to be
represented by 0.6 inches, then the minimum time period
(0.016 seconds) is nearly the same as the minimum increment
on the available plotter (0.01 inches). To investigate a
lcng time period would require a very long graph. The
ability *o look at selected portions of the graph is neces-
sary to overcome this problem.

A problem also exists with the resources axis of the
graph. A large number of I/0 devices may cause the graph to
extend upward a considerable distance. 1In this case, the

graph is split into multiple graphs which may be placed one

66

above the other. Each graph is a complete graph with all

axes labeled.

Trace Record Prcduction

Rfter the information described above is produced, the
last phase of the program produces a set of records which may
be called a jobstream trace. This trace information is pro-
duced as three distinct record types(Figure 6). The first
record is a job record, wvhich defines overall jeb infermation
such as the time it was read into the system, the number of
steps, the priority, and output infcrmation. The job record
is a variable length record with an ordinary data set organi-
zation,

The job record includes a pointer to the first step
record for the job. Both the step records and the I/0
records are contained in a common data set because they re-
guire the same organiza*ion and are the same length. Infor-
mation in the step record includes both the core storage re-
quested and used, +the CPU time, the priority, and the time of

L2 Aam A PR S I R
LAVl atu Lo LmaAanat. Lwlle

n

Lmen 2l el A
Rl I S Y R R

obtain both the first of the I/0 records and the next ste

e

record.

Each I/0 record is an indication of seven I/0 actions.

Fach record has a one byte unit number followed by three

67

1 L] | JUBNRME 1 1 1
STEP PRINTER READER STRAT
REROER END STEPS | PRIOR | TEMP COOE
Jog
CLass Jog 10 LENGTH | ACCOUNTING
QUTPUT| ORTA
FIELDS. . Clnss | seTs | WTR STRAT
NTR TIME AUDITIONAL WTR RECORDS
JOB RECORD
STEP POINTER DISPATCH RECORDS
REQUESTED usgeo
HO STERE | H1 STORE | HO STORE | 1 STORE
INITIRTION TIME TERMINATION TIME
STEP
PRIOA | 3ug | COMP COOE CPU TIME
STEP RECORD
NEXT RECURD UNIT TINE USED

DISPATCHING RECORD

Figure 6. The jobtrace records

68

bytes of use time. Each record also has an address of the
next I/0 record.

The information represented by these records is believed
to be in excess of the requirements for a system simulation.
Few, if any, of the previously cited sources have had as much
data to work with in their simulations. Additional informa-
tion is provided so that the simulation may be as simple or
as complex as is desired. To provide the jobs in the same
order as they were presented to the system, the data set con-
taining the job records may be scrted. The pointers to the
step records will still be valid, so this is an acceptable

modification.

69
DATA ANALYSIS OUTPUT

The output of the data reduction program is interesting
for an insight into the workirg of the system. The records
and plots produced show certain immediate information for ap-
plication in system performance improvement. Figure 7 shows
the highlights of one data reduction program output.

The first section of the output shows statistics on the
jobs which have run to completion during the monitored time
period. The first cclumn of the data provides the users
jobname. This jobrame has two additional names given to it.
First, since the job is started by a particular initiator,
that initiator name is given as an "alias" for the job. The
second identificationrn is the ID number assigned to the job.
This number is added to provide an easy way of referencing

each job. The remainder of the information is an indicatoer

P I S N o R s M T R TR Y - 2wt
viL o Liw LoDV aviavat [JUU-

P

T

of i al time divided by
the rumber of dispatches of that job is an indication of the
time between interrupts for that joh. The system has a fa-
cility called time-slicing which forces the job to release
the CPU so that another djob may execute. This time-slicing
interval may be selected using this data as a quide.

The second sectien of the output shows some of the data
concerned with the monitor operation. A total number of

records processed, and the totals for each type of record

shew the magnitude of the process. The elapsed time for the

70

JOB DISPATCHING STATISTICS

Nane Alias Dispatch Total Tine ID
BATCHO2 B 173 11.18 5
A3691UpP4 D 207 8.28 9
A421FS B 105 7.93 10
C383SMHP D 63 2.54 13
B2872222 D 124 19.41 16
B2873333 D 70 3.29 17
A233T101 B 227 7.71 14
A273SPLT C 53 2.39 20
C288BG2 D 233 13.03 18
C393MTHO C 247 10.08 24
DEKLIST9 C 78 2.94 24
C4UL9FORT B 379 26.64 19
A4OTFO02 D 287 14.68 22
A254H C 353 36.46 25
DUANEQS E 964 1:37.76 7
D204SELT B 320 27.31 26
C346NALM D 243 13961 27
R409D9 B 99 5.84 30
C3L46NAME D 214 13.23 1
A435ADA B 255 14,58 32
BZZSDIFT B 73 3.04 34
C2418B9 B 66 2.78 35
TLO6SMF C 648 37.09 28
A345STAT D 586 1:06.82 33
cu28vy7 E ue7 u49.06 29
D342 C 93 4.99 37
A282TRAN B 98 3.36 36
A335PLT C 144 5.98 40
C38UAAEF D 262 9.39 38
C235CJ%% C 51 2,25 42

Figqure 7. Output irformation from the data reduction pro-
gram

71

STATISTICS ANALYSIS RETURN

Total Number cf Records Processed

589,345
Time Information
Collection Date 71:232
First Record 11:47:10.01
Last Record 12:18:45.06
Elapsed Time 31:35.05
Distribution of Record Types
Type 0 42392
Type 1 471
Type 2 108682
Type 3 218900
Type & 238500
Zers time 13463

rigure 7. Outpu*t information from +he data reduction pro-
gram (continued)

72

Distribution of Unit Activity

Name Type 0 Type 1 Type 2
00B 246 2 501
0oc 11541 18 21128
00D 2627 8 4562
00E 2828 18 3118
010 1932 16 2137
01F 201 0 240
020 603 0 680
021 0 0 0
130 319 50 17459
131 199 1 391
132 24 0 34
133 392 10 706
134 286 10 549
135 298 4 526
136 0 0 0
137 98 0 147
280 0 0 2
281 1405 13 1767
282 197 6 288
283 3784 25 3904
297 1421 0 11255
330 1455 57 19047
3N 0 0 0
332 1106 42 1525
333 2681 54 5597
334 2288 38 4360
335 2015 £5 3812
336 76 0 293
337 0 0 0
380 1 0 36
381 1 0 0
382 3887 32 4088
383 184 2 216

Fiqure 7. Output inforrmation from the data reduction pro-
gram (continued)

73

Unfinished Job Summary

Name Alias Dispatch Total Tinme ID
SYSTHAIT 4527 13:06.56 0
SYSTREQ 2319 35.13 1
PRT2 1002 47.13 2
PRT1 1264 1:02.54 3
MASTER 392 9.13 4
A335PROG B 201 6.98 41
OPER 439 29.53 6
C206TOB E 704 1:11.61 39
IOSTAT 325 18. 49 8
C369BGK 3 D 212 8.09 43
RDR1 2433 1:49.32 11
PUN1 451 16.78 12
CPS 108 6.44 15
B383CHMPL C 203 34.43 45
MOUNT 27 0.94 23
RDR2 69 2.64 44

Figure 7. Output information from the data reduction pro-
gram (continued)

T4

collection period is also giver. From these numbers, it is
apparent that a large amount of activity is present in the
computer system. Dividing the total time by the number of
records provides a measure of the average time between
records. This *ime period is less than three milliseconds.
If only the dispatching records are conrsidered, the interval
is still something on the order of nine milliseconds.

The small size of the average time period may also be
seen in the "zero time" count. This field represents the
number of time periods which were less than one timer unit
(0.016 seconds) in duration. As can be seen, nearly two-
thirds of the activity was within this category.

The third section is devoted to the I/0 unit activity.
I/0 unit aciivity is imporfant in determining chanpel splits
and device overloading. These areas are considered when the
I/0 operations are the limi+ing factor on a system's perform-
ance. These records may be sufficient to provide some infor-
mation relevant to system performance, but a better guide
would be the actual address of the operation. For this
reascn, a data set is produced which contains the address of

Anml T /A Sl + AavA hadl L wrnTliuma S AanbifFinadbsAan and +LAa
Talll LU AlLeliludL ol Uuwnno v VULUIT ATl soduldvil Qizua ey

m

urit number. This data may then be tabulated into sonme
usable form. This data is then useful to position the data

sets on these volumes.

75

A careful examination of the records will reveal that
many more I/0 interrupts occur than EXCP operations. Since
the I/0 interrupt operation is a hardware action, it is
assumed to be correct. One of the sources of extreme differ-
ence is the use of data transfer methods which dc¢ not rely on
the system EXCP method. This may be seen in the data for the
system volumes 130, 297, and 330. These three volumes con-
tain the principal data sets for the system. Since the
actions on these data sets are controlled by the system, EXCP
may be bypassed and no records will be written for EXCP te
these data sets. Therefore, the only reliable indicator of
activity appears to be the I/0 interrupt records.

The fourth section of output tabulates the unfinished
job information. Included among the unfinished jobs are
recocrds which tell how much time various system tasks re-
guire. The first data item in +his list is an indication of
the system wait time during the interval. This information
combined with the time period of the mcnitor, shows the per-
centage of CPU utilization. 1In this time period, the CPU
utilization was approximately 59%, but this run was during a
slack time for computer usage,

Notice that the time required for the monitor program is
also listed in this output. In this case, the monitor re-
quired slightly less than 1% of the time period. However, it

must be remembered that the monitor also requires at least

76

one tape unit and causes some interference with channel ac-
tivity. One other situation occurs while the monitor is run=~
ning which may influence these numbers. If a monitor buffer
gets full before the previous buffer has been written, data
may be overwritten. This could happen if a tape error is
detected and automatic error correction actions are applied.
Tc prevent disastrous results, a feature of the operating
system is used to effectively lock out all other tasks from
execution. This occurs fairly regularly in the time period
and nc measure of this influence is showun.

The second form of output is the plot produced from
these racords (Fiqure 8). The plot is provided as a pair of
sections which may be put together. The plot is labeled with
I/0 unit numbers and a concurrent job number. This job nunm-
ber has no relation to the job identification number, howev-
er, the job identification number is used to label each lirne
on the CPU requests section of the plot. Fach action is the-«
oretically shown by a line segment extending from the begin-
ning of the action to the end. 1In many cases, however, the
acticn has a zero time length., 1Ir these cases, only a dot
will be plotted. It was also found necessary to =iiminate
multiple dots on the same *ime coordinate. This is an indi-
cation of *the number of actions which occur between timer in-
tervals. In the I/0 action secticn, the intent was to meas-

ure each I/0 action from the EXCP record until the interrupt

JUB AND UNIT REFEREMCES

77

Ty oro1ri1TT

m»
§5¢
39S
p ALY
399
e
431
330
o?

T
i

i
L}

[
f
L}

t
.
'
'

1
|
i
:
i
1
s
1

187
13
138
1H
133
13z
13
10

TT fTTrirrevrrrryvvvr

gaggs
-
3 o
rryryryr7rr1r79717 17TTT 7 TT1T 1T T T T TYXyrrr

iaBBbaBalEE

Rganrgse

. e e e L T

Trrrrrrri

B e e e s e e s e e e mem e e e s = e s

1] 1 1 1 1

FEEREEEE

Q
=

VIS - U VAN P S U

126lLeU6 t2: it N3 12¢11¢50 12111152 12: 11:S4 12: 11156
TINE ... ONE [NCH T® ONE DECOND

Figure 8. Activity plots of the collected data

OB it e me e e e —— — e em
036 N i . R
. LT L 1 1 1 1 1
111156 12:12:24 12:12:26

12112:20

12:12:30

12:12:32

12:12:34

12:12:1 36

78

reccrd. As shown above, the records do not match, so this
was only partially successful., In the cases where only an
I/0 interrupt was recorded, the record is marked by a single
dot. Although it may not be immediately apparent to the eye,
many of the "lines" on the plct are really a series of close-
ly spaced dots. This is especially true in the CPU activity

anrd I/0 unit 297.

Data Analysis Discussion

To a system programmer, the output from the data analy~-
sis program can be very interesting. The data which is
tabulated and plotted may show information which will aid in
system performance optimization. The printed tables shown in
Figure 7 may guide the system programmer in this effort.
First, the information provides the measurements necessary to
calculate the average CPU +ime per dispatch. This nunmber
should be used to guide the selection of the time-slicing pa-
rameters. The time-slice period should be large enough to
satisfy 90% of the job reguests, This is supposed to allow
most of the jobs to progress far enough to stact an I/0 oper-
ation before it is interrupted. From the data presented
here, this number might be selected at 80 milliseconds. Pre-

vious selections set this number at 200 milliseconds.

79

The next information of interest is contained in the
urfinished job summary. No other measurement scheme allows a
measurement of the system tasks. These tasks include the
reader and writer programs and other system control tasks for
such things as modifying jobs from class to class, displaying
job gqueues and cancelling jobs. Also included in this summa-
ry are the teleprocessing jobs. From the table, the readers
and writers accumulated 3 minutes, 55.77 seconds out of 31
minutes, or about 10% of the time period. This seems to be a
reasonable amount cof time for the speooling operaticn. As uas
previously noted, this data was collected during a slack day,
s0 the system wait time (SYSWAIT) is quite high. 1In fact,
over this time period, the CPU has less than 59% utilization.
The two tasks which represent system activity are SYSTREQ
and MASTER. The accumulated total time of these two tasks is
44,26 seconds which is less than 0.5% of the time period.

The two teleprocessing tasks, OPER and CPS are listed
with the unfinished jobs. OPFR is really a specialized task
for operator control purposes, but CPS is a user oriented

system. Together, these two used about 0.2% of the time. Of

g, - [I IO S, R PRI R SV g -—— e
cou 1= elLy l1litllie altravivy cuv

Q
=

T o . .- 3 -3
10W) Was ieaq

L]
"
<i
—
)
Ci
ol
]
=
[s]]
e
(dad
~!
=
o

CPS.
The last bit of information on this sheet is the time
required for the statistics monitor IOSTAT. This quantity is

less than 0.1% but it must be remembered that most of the

80

monitor's time is spent under some other task's time. 1In
fact, this time for IOSTAT may be down within the timer reso-
lution.

Unit activity is the next important measurement. This
information may be used to locate critical data sets for
optimum performance, The critical data sets exist on the
units named 130, 297, and 330. From the numbers recorded,
these units appear to be quite evenly accessed.

The plotted information is more interesting as a method
cf viewing the system activity rather than having any intrin-
sic value in a detailed analysis. The plots in Figures 8 and
9 are typical of two time periods in the data. Fiqure 8
shows an active pericd in the computer. VYNote that the systen
wvait time (job id number 000) is nearly a solid line to start
with and toward the end of the plot the activity becomes much
less solid.

Other tasks of interest might be OPER (006) and IOSTAT
(008). The pattern of OPER is determined by the option se-
lected and the automatic update time selected by the opera-
tor. In this case, the patternr is composed of three little

bits of time fcllowed by & four Second walit., The

t=h

e |
T, 1

SY. D1

L]

is 2 signal from the timer followed by & read of the operator
display. After the read is complete, a little bit of time is
reqguired to format the next display, and *hen the write oper-

atior is initiated. The last little bit is used to set up

JIB AND UNIT REFERENCES

389
3se
81

397
936
25
sy
33
892
M
33
297
-)
ese
2

137
136
138
1%
193
132
<
130

oo
oIf
o3

81

T
I
f
I
|
|
l

LS L L 3

Triyrryrriryrorrvrrryr1rr1y T
L]
L]
1
i

|
l
|
|
|

T T vt r1rJyritrrid

ms . . .

I 108, S
. Ro7. - — e e ot mremtnacimmmeme & mesmmanet ree mremeamemmmnst e reamrte—oann
L 00§ _) : . -
L o1 e
L one e e e v e mtemar e o e s reme —

| 1 I 1 J 1 1
12,00; 22 12,00: 24 12:00: 26 12:00: 28 12:00: 30 12:00: 32 12:00: 34

TIME ... ONE [NCH T@ ONE 3ECONO

Pigure 9. An activity plot for date analysis

i

]

1

1

1

1

.2:00: 32

12:00: 34

12:00:36

12:00:38

12:00: 40

12:00: 42

12:00: 44

12:00: 46

12:00:48

82

the timer for an interrupt after a specified period of time
(4 sec.). The read and write operations may be seen in the
line marked 020.

The statistics monitor (008) is a regular pattern of two
dots followed by a slightly longer pericd of wait. The write
operation is directed to unit 281. These writes may be
closely correlated with the CPU requirements. This regular
pattern may be noticed in Figure 9 as well. In Fiqure 9, the

cnly other job running is 007. This job requires a tape

w

mounted on unit 283 and the effect cf channel contenticn may
be easily seen because the CPU time for job 007 is
interrupted during the time that unit 281 is used. Since th2
monitor runs at a higher priority than any other Jjob, its
requests are serviced before other job requests. Therefore,
the execution of the job using unit 283 is interrupted until
the write is complete.

Figure 9 also shows the start up action for reading jobs
into the system. As a job is read in, distinct phases may be
noteéd. First, the cards are presented to the physical card
reader. After a bit of checking, the reader begins spooling
+he cards onto a disk unit; in this case the unit is 135. At
the end of a step in the job, the step and its control blocks
are entered into the job queue on unit 297. These phases may

be clearly seen in Figure 9.

83

PART THREE.

THE SIMULATION OF AN OPERATING SYSTEM

84

TRACE~DRIVEN SYSTEM STMULATION

Oonce the trace information is available, the next step
is the modeling of the operating system. An immediate
decision must be made to determine the simulation language to
be used. Since any possible language must be, first of all,
available, only three simulation languages were considered.
These are GPSS, SIMSCRIPT, and SOL. Of the three, the only
one which is truly a production system at this installation
is GPSS. Additional languages are available from external
sources, but their capabilities are either unknown or their
costs are prohibitive.

Comparing the available features in the three conmpilers
is the next step in the decision. 1An article by D.E. Knutkhk
and J.L. McNeley is used as the definition of the SOL lan-
guage {12) . Most of the features of SOL are well designed feor
a simulation language. Inadequate arithmetic capability is a
serious problem in SOL, as is the omission of a list or queue
creation facility. This ability is important for the simula-
tion of an operating system. The only cther questions con-
cerning SOL are the problems of I/0 and storage simulaticn.
The I/0 sStatemenis available seenm to he guite powerful. How-
ever, there is no way to coanveniently add user routines to
handle the jobtrace information. The description of SOL does
not specify the exact ferm of the storage requests. For true

systenm simulation, the storage must be a discrete element

85

storage. This is an unknown in the SOL systen.
Unfortunately, SOL is implemented as an interpreter so exten-
sive simulations would be costly.

The second language to be investigated is SIMSCRIPT.
Important problems in the simulation include queueing, I/0,
storage, and communication between parts of the model. As in
SOL, user controlied queueing does not seem to exist in SIN-
SCRIPT. In addition, all waits for facilities are done in a
first-in, first-out (FIFO) list form. A system would in all
probability use a priority queueing for the internal lists in
the system. VNote that priority queueing is a more general
form, since all entries with the same priority are handled as
a FIFO list. Since SIMSCRIPT is implemented as a FORTRAN
superset, FORTPAN I/0 may be used as well as an extensive set
of special SIMSCRIPT I/0 instructions., Storage considera-
tions are again unknown, but the communication problem does
not appear to be solved.

GPSS is the remaining language to be investigated. The
definition of GPSS which was nced for evaluatior is found in

the GPSS user's manual (7). Most of the necessary properties

- - - fTno a4 b

mema mseanTalTla A . a £
QAL T AVAALLQAP LT Al ITDOD wailt a L

< w Cri
most impertant problem is the storage operations. Storage in
GPSS is viewed as a continuous entity with no holes or

spaces. Fragmentation cannot occur in GPSS storages. The

second problem, the communication between transactions, is,

86

at the least, very difficult in GPSS.

After the above evaluations, it is seen that none of
these languages are adequate for the simulation required.
The necessary language appears to be some kind of cross be-
tween GPSS and SOL. This is the form of the BOSS (Basic Op-
erating System Simulator) language which was develcoped to
fulfill the regquirements of this dissertation. This language
is specifically designed for the simulation of operating
systems. Although it is a combination of GPSS and SOL in its
functions, statements such as assignment statements and I/0

statements are quite similar to PL/1.

Why Create a New Simulation Language ?

"Before a designer sets out to devel-
op a new simulation language, he should
seriously corsider whether a new language
is really necessary. A Lew languags, in
itself, is not sufficient justification
for existence; some demonstration of the
usefulness of rew features is necessary.
Ofter user complaints about existing lan-
guages are not with the language per se
but with certain features of the implemen-
tation: lack of documentation, lack of
training aids, difficulties in

center's monitor system, lack of adegquate
debugging facilities, and so on."

As the quotation above (31) states, simulation lanquages
should not be created for the pleasure cf the designer. The

only apparent justifications for a new language are the special

87

features which are required. A careful analysis and comparison
must precede the design and implementation of a new simulation
language. Sometimes the resulting language may be a special
purpose language which may be difficult to compare with a yen-
eral purpose system. WNevertheless, the known languages should
be investigated to determire if the required features are
available.

The design of an operating system places some rather
unique requirements or a simulation language. The obvious re-
quirements of time advance,; reserving resources for a particu-
lar job, and controlling an orderly progression of jobs through
a system require certain capabilities. One of the first desir-
able features is some form of input to describe the job streanm.
The particular form of input is somewhat dependent upon the
uses to be made of the data. Some gereralized form of input
car be used for several purposes, but a specialized input for
only jobstream information might alsc te ceonsidered.

Communication bhe*ween separate transactions or tasks in
the simulated system is a very desirable feature. 1 typical
multiprogramming system is usually based on separate tasks

L~ - N -

3 -~ - b=l 2 Ll o et 2
which must G OCn€T TaSA3 10 tng SySteER. 4l

w N\ di o pass lll
exatple of this communication occurs in the spooling of data
onto secondary storage for later execution. The input program

is responsible for assemblying all the necessary information

into a2 set of pointers, and then placing that set of informa-

88

tion into a list where it waits until it may be executed. Some
other task (sometimes called an initiator~-terminator) is re-
quired to begin the execution of the job. At the completion of
the job, the output (usually printed or punched) must be en-
tered into a list for another task to transfer the output fronm
secondary storage to the physical output device. The interde-
pendence of these tasks requires a signal from one task to
start the next task. A "mailbox" technique could be used where
the tasks keep looking for work at regular intervals. A
quicker teochnigque can be used if the tasks have some form of
"shoulder-tap" communication. The information may then bhe ob-
tained as soon as it is available.

A third element of operating system simulation involves
the allocation of resources. Beth partial and total alloca-
tions are used in operating systems. Partial allocatiorn is
typical for resources such as primary and secondary storages.
An important res*riction on partial allocation is the discrete
nature of these devices. Allocaticn must only occur on dis-
crete boundaries and may not be moved from its original posi-
tion. This leads *o problems of fragmentation, where free

B S U mU 2 o v
1OL Le O LLYuRUUE. Tils t=ais

SpaCe wmay n

ck

-T2l ~ea~L L L
aitinvuv uil

ct
m
i)

total free space might be sufficient to satisfy a rsquest, it
is not in a single area. This fragmentation might be one of

the problem areas to be studied.

89

THE BASIC OPERATING SYSTEM SIMULATOR

L special purpose operating system simulator should be de-
signed to aid the system simulation study as much as possibhle.
The use of terms which are either common to the system simula-
tion programmer or descriptive in nature is an aid to the writ-
ing of the simulation., 1In addition, artificial constraints
should be eliminated as much as possible. The form of the lan-
guage must be easy to remember and might reasonably be based on
cne 0of the common computer languages {(PL/1, FORTRAN, ALGOL,
etc.). Typically, system programmers want more facilities and
capabilities than are available, so easy expansion or addition
should be provided.

The form of the Basic Operating System Simulator (B0SS) is
similar ¢o PL/1. The statement structure has an optional
label, a statement identifier, and a trailing semi-colon. The
label consists of an identifier followed by a colon to delimit
the label from the statement. The statements are free format
and may occur anywhere within +he card boundaries.
Additionally, the statements may be placed on the same card as
other statements., CoRment statements ave allowed Which may
have any character except a semi-colon in then,

Some of the special features of the BOSS system are con-
cerned with memory maragement within the model. The memory

management keywords ALLOCATE and FREE handle all reserving of

90

memory space. The memory space is defined in discrete incre-
ments and maintained as a discrete storage area. The ALLOCATE
feature also has a conditional entry feature which allows
continuation of the prcgram even though the allocation is not
possible.

Another special feature allows the various transactions
within +he simulation to communicate with each other. This
feature is similar to the WAIT-POST facility in IBM/360. The
commands are WAIT ON(list) and SIGNAL which allow the simula-
tion to wait until the event is completed.

Input/Output is allowed +hrough a statement structure
almost identical to PL/1. Data is processed as a stream of
characters from which the requested areas are determined. Two
forns of data transfer are allowed, a free format process and a
pregrammer controlled format. In addition, a standard statis-
tical output is generated at the end of the simulation run
which may also be cbtained at specific intervals (snapshots).

User defired lists or queues are possible with ENQUEUE and
DEQUEUE capabilities. The ENQUEUE process also allows an event

completion signal to notify other transactions that something

LA

L TP
na e

Tamad S nda dLlba ~samsva
LTl 2oLV L aT yuTucse

m

an MhaAa ~iasnsam A 4
< L1l YuuZe au ta L= 4

Lol
M

first in-first out within a priority class.
External subroutines may be incorporated into the simula-
tion by using an EXECUTE statement. Either BOSS subprocesses

or assembler subroutines mey bhe called in this way. This

91

allows certain standard routines to be written once and used by
several simulations. 1In addition, several standard functions
are provided to compute ohservations from standard probability
functions.

The BOSS program is executed as a standard language proc-
essor in the IBM system. The program is able to produce object
modules and object decks, or use these as subroutines. Check-
point data may be written at reqular intervals for restart of
the simulation. The instruction structures are described
below.

The implementation of BOSS was achieved with a modified
form of the META PI compiler~compiler (17,18). This technique
provided the syntactical and some of the semantic operations
with 2 minimum of work. The entire lanquage definition in the
META PI language is given in Appendix F. As might be expected,
certain features have been added to META PI to accommodate the

simulation language definition.

Variable Types

The BNACE cimunlad+inn Tan A allAnuwe acrvnaral ASFFarand: vawmo
-~ Ao \axs = Nl de N T A A I vy SRl e N AN S S A - B o § 3) v 1Az

iable types for simulation purposes. These variables are used
to represent values, actions, or physical items necessary for
system simulation. Variable types are usually determined by

the contextual use of the variable. 1In some cases, variables

92

must be defined to assign certain characteristics such as
length or dimension. Almost all variable types may be arrays
if declared as such. Arrays may be n~dimensional with bounds
set as required. Both upper and lower bounds may be specified
when *the array is declared. This is achieved by specifying a
bournds pair, two numbers, separated by a coclon. The first of
these numbers will be used as the lower bound, and the second
number will be the upper bound. TIf only one number is speci-
fied, the lower bound defaults to zero, and the number speci-
fied is used as the upper bcund.

An important variable for simulation is the transaction
parameter. This variable type is associated with the current
transaction, snd remains with that transactiorn for *+he duration
of its life. Since these parameters are unique to a particular
transaction, they may be used to represent information unique
tc that transaction. Twe forms cf the parameter may be used.
The first form is simply *the letter P followed by a number.
This form is used to represent an integer parameter value ard
i+ will be used as an integer. The second form is the letter
pair PF followed by a number. The variable is then used as a

1§ point number. The postfix number {od

oty

-« . a0
l10atTl

Hy

[t

these paramneters
is chosen from the numbers zero to seventeen. Both floating
point and integer parameters are stored in the same area, so
numbers may not be used for both integers and floating point at

the same time.

93

Three variable types are used to store values for later
reference. These types are INTEGER, FLOAT, and BOOLEAN.
Integer variables are used only for values which do not have a
fractional part. These variables are common in simulation for
counting and quangity recording. Integer is the type assigned
for ordinary assignment statements. FLOAT is used for those
applications which must have fractional parts. Among these ap-
plications is the measurement of time for a process. Statisti-
cal distributions provided within the language usually return
floating point data. DBOOLEAN variables may be used to seot
switch information for later testing. The common Boolean con=«
nectives may be used to form Boolean expressions.,

Two types of variables are used to represent storage tvoe
entities. These are STORAGE and QUEUE. A STORAGE entity is
used to represent the physical act of storing data or reserving
space for data. A transaction must request space for stcraga
from a particular storage unit. After using that space it nust
be released or freed so that another transaction may use the
same space. Storage is a discrete entity and discrete requests
must be made. Blocks or units of storage must bhe specified, so
the variablc must be deciared. Fragmentation 1is possible be-
cause freed space need not be adjacent to the current free
space.,

QUEUE variables are used to produce waiting lists of

transactions, Queues may have 2 maximum capacity and may b2

94

either orderad by pricrity or first-in, first-out. The number
of transactions waiting in the queue may be limited by a decla-
ration. When an entry is removed from the 1list, the entry
removed is the top-most entry in the list., Transaction removal
may only occur if an entry exists in the queue.

FACILITY variables are used to represent items which may
only handle one transaction at a time. These devices may be
considered valuable resources because the other transactions in
the system may be competing for its use., The SEIZE and RELEASE
commands are used to service facilities., If a trausaction
finds another transaction has already pre-empted the use af the
facility, the current transaction is placed on a waiting list.
This waiting list is ordered according to the priority of the
transactions in it.

The EVENT variable is used to record the occurrence of
some action. Many situations require a coordination effort be-
tween several transactions. Event variables record information
which is used to determine if a transaction has completed the
event, cleared the event, or if another transaction is waiting

for the event to be completed,.

95

SIMULATING AN IBM/360 OS SYSTEHM

The simulation of an operating system requires a great
deal of investigation., 1In fact, the simulation designer should
be as familar with the workings of the operating system as he
is with applications programs. Many questions about a systea's
operation must be answered before it can be simulated., This
minute investigation of the system ofter proves as useful to
the desigrer as are the final simulation results in understand-
ing the systen operation.

0S is best modeled in three parts. The firs*t part of the
model is the reader procedure. The reader procedure is used to
bring the job into the system for execution., The reader is the
software entity which translates JCL to control block informa-
tion and spools the user data onto secondary storage devices.
At +he erd of the input data for a particular job, the job is
placed into the job queue where it awaits execution. A linmit
is placed on the number of reader procedures in the system. In
simulation models, each reader may be represented by one trans-
action which continually lcops through a series of operations.
The required actions are: 1) read in +the job information; 2)
wait until +he proper time as recorded ir the job information;
3) enqueue the job in the proper input queue as described by
the job information; 4) return to get the next job. It is the

duty of the reader *c signal the next part of the simulation

96

that a new job is ready.

The second part of the simulation is the initiator-
executor, This section responds to the prompting of the
reader, and picks up 2 job from the job queue. From the step
records, storage and other resources are allocated. The
executor portion then passes the job through all of its steps,
causing the proper waits in the storage. When the last step
has been executed, the job is put into the output queue for the
last part of the simulation.

The thitd part of the simulaticn is the writer pregranm.
This section is used only to output the job. Information is
picked up from the output queue, and this data determines the
length of time the writer is busy with this job. BAs with both
the reader and the ipitiator-executor, a limited number of
writers are available. Fach writer is represented by a trans-
action which loops back to +he first of its section.

Timing informatior is picked up with the records which are
part of the jobtrace. 1In addition, the simulation is terminat-
ed by one of two conditions. The first possibility occurs if
the model reaches 2 state where no transactions can be
dispatched for executicn. This might occur if the model ruus
out of work, or if a mutually exclusive lock-out condition
occurs. The second form of model termination occurs when a
preset ‘ransaction termination limit is reached. This may

occur because a clock was produced which generates transactions

97

at regular intervals and these are then immediately destroyed.
In this way a clock effect may be obtained by terminating the
transactions and using these transactions as *the limiting
count,

A sample simulation model is shown in Figure 10. This
particular simulation is designed as a study on the effect of
storage requirements in a system, but it is probably more im-
portant as a sample of the form of simulation. It is assumed

that the input data ccnsists of four data items per job step.

0

The first number is the elapsad time periocd between the previ-

<

ous job and the currert job as they are read in. The second
number is the amount of storage required by this job step. The
storage residency time is represented by the third data iten
and the fourth item is the number of pages printed by the job.
The +ime information are floating point numbers, but the other
two items are integer numbers. It should be apparent from this
example that the language is well structured for this type of
simulation. Hore extensive examples may be found in Appendix
F.

Simulation of specific hardware devices depends upon the
charactaristics cof these devices. The SEIZE and SELEASE com-
mands are used to reserve exclusive control of a facility for
one transaction. If another transactior requests a facility
which is already in use, the new transaction is queued into a

list based on the pricrity of the tramsactions. 1In this way

98

SAMPLE : SYSTEM 50,5
NOTE THIS IS A SAMPLE TO SHOW THE FACILITIES OF
THE SYSTEM SIMULATION LANGUAGE CALLED BOSS.
THIS IS IN NO WAY REPRESENTATIVE OF ALL OF THE
FEATURES AVATILABLE IN THE LANGUAGE. s
DCL (JOBQ,0UTQ) QUEUE(75) , MAIN STORAGE(370) ,
CPU FACILITY , EXTIME FLOAT , (QIN,QO0UT) EVENT ;
NOTE THE FIRST SECTION DEFINES THE READER TRANSACTIONS
WHICH OBTAIN THE INFORMATION FROM AN EXTERNAL
SOURCE ¢
GENERATE MAX(2),MEAN(0), START(0) ;
PF1 = 0 ;
RDRIN : WAIT UNTIL(PF1) :
GET EDIT(PF1,P2,PF3,PU4) (SKIP,2(F(8,4),X(4),F (4),X(4)))
ENQUEUE JOBQ,QIN ; GO TO RDRIN
NOTE NOW SIMULATE THE INITIATOR-EXECUTOR PART
GENERATE MAX(4),MEAN(O),START(0)
INEXEC : WAIT ON(1,QIN) ; DEQUEUE JOBQ
ALLOCATE MAIN,P2 ; WAIT UNTIL (PF3) ;
FREE MRAIN,P2 ENQUEUE 0OUTQ,Q0UT
GO TO INEXEC
NOTE NOW SIMULATE THE WRITER ACTIONS
GENERATE MAX(2),MEAN (0),START(0) ;
INWTR : WAIT ON(1,Q0UT) ; DEQUEOQOE oUTQ :
IF P4 > 10 THEN EXTIME = ,25 * p4 ;
nh

ELSE DO 4= P4+ 10
EXTIME = .15 * P4 ; END ;
WATIT UNTIL (EXTIME)
GO TO INWTR ;
NOTE THE NEXT SECTION DEFINES A CLOCKX TO BE USED AS
A TIME LIMITER ;
GENERATE MEAN (1),DEVI(0) H
TERMINATE 1
END

Figure 10. 2 sample simulation in BOSS

99

an I/0 request can be simulated by issuing a SEIZE on a

channel and a unit address. To represent the actual data
transfer, a WAIT nust be issued to hold these facilities until
the simulated data transfer completes, After the time period
is complete, the facilities are made available for other trans-
actions. The use of a subprocess to do this entire operation
will allow a savings in the programming and will allow easy
modification to change device type.

In the simulation of an operating system, one of the
changes desizted migh*t be the total number of resources such as
readers, printers, direct access devices, and even central
processors. In many cases, the only changes necessary to sinu-
late these modifications would be to change a corstant. For
example, to increase the amount of primary storage should be
just a constant in a declaration, increased printers just means
the number of writer transactions is increased, and increased
readers is the same form of increase in the number of reader
transactions,

Another possible modification might be the addition of
multiple central processors. If all of the processors use a
common storage device, then a subprocess for the CPU must
decide which CPU is free and use that CPU. A more extensive
task would be to increase the number of direct access devices.
Scme preprocessing may be necessary to select particular job

accesses for the new devices. These new devices may be diffi-

100

cult to use properly.

Software modifications might mean changes to the simula-~
tion model itself., Certain things such as using more job
classes for jobs, are more or less trivial changes. On the
other hand, modifving the criteria used to select a particular
job gueue for a job may require some form of external pre-

processing.

101

PART FOUR.

CONCLUSIONS AND SUMMARY

102

This paper has proposed the combination of two evaluation
techniques into one procedure. This combination is postulatad
t¢c provide a more accurate evaluation for a complete computer
systenm, because *he simulation is driven by the detailed data
obtained by the monitor. WNaturally, the simulation is costly
because of the magnitude of the data to be processed, but the
data structures and the svecial simulation language are effi-
cient means of handling this magnitude of data. Simulations cf
computer systems are generally recognized to be the most gener-
ally applicable form of evaluaticn, so the prececdure presented
here is postulated to be useful in all forms of performance
evaluation.

Although the measurement step of the procedure is primari-
1y designed to provide data to the simulation step, the irsight
intc the operation of the system must not be ignored. The data
produced by these measurements may suggest particular areas to
irvestigate. For performance monitering applications, these
measurenents may be sufficient to evaluate the potential prob-
lem areas in the computer systenm.

The measurement step is dependent upon a software probe

--1 & % e — L 1 s -2 . n A o - a1 =
wricn umusxtT D Talii0lrEu TO

it the system on #hich 1%t iS %0 D

[¢x)
tHy
it}

rur. This fitting process must be done by someone with an
intimate knowledge of the computer system. The proper loca-
tions must be found to be modified and the data obtained must

be prop=arly presented. This portion c¢f the process has been

103

verified by experiments with an IBM 360/65 operating system.

It is postulated that other computer systems can be measured in
+he same way. This particular point is necessary in order to
apply this procedure to a general class of computer systems.

In fact, this process has been applied tc at least one other
cemputer system (see Schwetman (24)).

The creation of a simulation language which will easily
provide a model of the operating system is an important part of
the total system. The features built into the BOSS language
allow the simulaticn designer to accurately model the computer
system. Of course, the designer must still have a certain
level of familiarity with the system, but the degree cof
familiarity varies with the required simulation. It is the
author's belief that *the BOSS system is misnamed, because it
appears to be much more general than just an operating systenm
simulator (see Appendix D).

The production of a job stream trace and the use of these
reccrds may be impertant to a serious system simulation. How-
ever, it is believed that the data in these records is

seriously degraded because of the timer resolution. Since such

- L QU O - - - y PRI SO g e -— 3 L o ee ~ -
a l1arge nuiiper oL recolds tapploxinac woTLnLLud) ltlaye ail

“*

he PN
+¥

QO

apparently zero time period, a randomizing factor would have to
be applied. This would then make the simulation less accurate
in an area where accuracy is very important. The lack of I/0

operation start times for so many operations also degrades the

104

accuracy in a similar way. These short-comings are probably
sufficient to put a severe burden on the user in the area of
the estimation of time distributions. With so many records in
these classes, the accuracy of the resultant simulation nmay
depend on some individual's insight into the system actions in
these areas.

Another possible shortcoming of the system is the fact
that the measurement and subsequent simulation may be dependent
upon tha software-hardware system which was used. By careful
choice of the nmeasurements, this effect should be minimized.
Careful study of the system may allow the evaluation of changes
in the software or hardware. If certain areas in the confiqu-
ration are frequently used, the use of these areas may be meas-
ured. Modifications may then be studied by varying the simrula-
tion to match the proposed modifications. The simulation phase
may therefore study deficiencies in the system being evaluated.

Th2 choice of parameters to be measured ssems to be
adequate for most job~oriented system analysis. In fact, s=v-
eral parts of the data have been used to improve system per-

formance at ISU. I/0 activity records are carefully studied to

gui h cefent © et i disks and T th

- - |- R -~ — P P -
TS 0Ol ULDARD allu rvyel t0 OTder une

il

i £ A
. 1 dalta =

fau
(

pla
information within these data sets. The job dispatching
records are being used to guide a new selection of time-slicing

parametars, as the previous values are apparently too high.

105

Several extensions could be considered in this area of
system a2valuation. PFirst of all, the information provided by
this scheme will probably bhe used in the near future for an
evaluation of the HASP(Houston Automatic Spooling Priority)
system, compared with a system without HASP, If preliminary
information is correct, HASP is an aid to the I/0 actions for
input and output, but is a degradation to the CPU requirements.
These theories will be verified by measurement with the systen
described here.

Many other programs or systems produce a trace o opera-=
tions during their execution. A good example is the Time Shar-
ing Option(TSO) of the operating system. Provided with the
system is a special trace program. The information available
from this program is typical of information required in time-
sharing measurement. Swapping, user interaction time, progranm
storage requirements, commands executed., and several other pa-
rameters are measured. These data items produce a trace of the
activity which may be later processed into a form suitable for
driving a simulation model.

An ambitious approach to the problems encountered during
this study would involve a combination of hardware and software
monitoring schemes. The problem with the I/0 operations couid
be circumvented by a hardware monitor which recorded informa-
tion on the I/0 instructions executed by the computer. These

instructions must be a part of any I/0 access, no matter what

106

program requires it., This hardware monitor cculd be a small
computer which might also b2 responsible for the data
collection and at least part of the timing. A feature of the
IBM/360 computers is available which allows the direct transfer
of eight bits of data between two machines. This feature, the
direct control feature, would be a possible method of communi-
cation between the IBM/360 and another device. t seens that
an immediate possiblity would be the addition of a high resolu-
tion timer, accessed through the direct control feature. If a
combined hardware-software mcnitor were produced, each part
would be able to obtain the data that was most compatible with
its characteristics.

In summary, the methods of evaluation should move furthar
into the area of measurement. In particular, each installation
reeds to measure its system with its normal jobstream. Only by
measuring the normal jobstream can realistic =valuaticns be ob-
tained. Admittedly, the measurement process is a time
consuming and sometimes dangerous process, but the results are
worth the time and risk. The simulation of the system can be a

definits aid to the prediction of futures needs, but the initial

current system®s performance. Optimization of a system is
still largely a matter of witchcraft, but the modifications may
be tested by the system described here. At least, the goals

can be recognized when they are obtained.

11.

12.

13.

14.

107

BIBLIOGRAPHY

Bonner, A, J. Using system monitor output to improve per-
formance. 1IBM Systems Journal 8, WYo. 4: 290-298. 1969,

Buchholz, W. 1A synthetic job for measuring system perform-
ance. IBM Systems Journal 8, No. #: 309-312. 1969,

Calingaert, Peter. System performance evaluation: survey
and appraisal. Communications of the ACM 10, No. 1: 12-18.
1967.

Cheng, P. S. Trace-driven system modeling. IBM Systems
Journal 8, No. 4: 220-239. 1969.

Drummond, M. E., Jr. A perspective on system performance
evaluation, IBM Systems Journal 8, No. 4: 252-263. 1969.

IBM System/360 Operating System Advanced Multiprogramming
Analysis Procedure Service Description Manual. Form
GH20-0725-0. Poughkeepsie, W.Y., IBM Corporation. 1970.

ITBRM System/360 Operating System General Purpose Simulation
System/360 Users Manual. Form GH20-0326-8. Poughkeepsie,
N.Y., IBM Corporation. 1970.

IBM System/360 Operating System Operator's Reference. Form
GC28-6691~2. Poughkeepsie, N.Y., IBM Corporation. 1971.

IBM System/360 Operating System System flanagemsnt Facill-
ties. TForm GC28-6712-3. ©Poughkeepsie, N.Y., IBH
Corporaticn. 1970.

-]

n
<«

id

IBM System/360 Cpe System Systen

rating Programmers Guide,
Form €28-6550-7. Poughkeepsie, N.Y., IBHM C

orporation. 1970

Katz, Jesse H. An experimental model of System/360. Conmu=-
nications of the ACM 10, ¥o. 11: 694-702. 1967.

Knuth, Donald E. and J. L. McNeley. A formal definition

of SOL. TIEEE Transacticns on Electronic Computers 13, No.
8: 409-414,

Lucas, Henry C., Jr. Performance evaluation and monitoring.
Computing Surveys 3, No. 3: 80-91. 1971.

Martin, James. Design of real time computer systems. New

15.

16.

17.

18.

19.

20.

21.

26.

27.

108

York, N.Y., Prentice-Hall, Inc. 1967.

Miller, Edward F., Jr. Bibliography on techniques of con~
puter performance analysis. BAn unpublished paper. Santa
Barbara, California, General Research Corp. 1971.

¥ielsen, Norman R. The simulation of time-sharing systens.
Communications of the ACH 10, No. 7: 397-412. 1967,

O'Neil, John T., Jr. Meta pi - an on-line interactive
compiler-compiler. Fall Joint Computer Conference
Proceedings 1968: 210-218. 1968,

Reschly, Christian J. The extension of an ISU version of
Metapi to allow for the execution of user defined primatives
loaded from a job library dataset. An unpublished Master's
degree paper. Ames, Iowa, Computer Science Dept., Iowa
State University. 1970.

Rothstein, Micheal F. Guide to the design of real-time
systems. New York, N.Y,, Wiley-Interscience. 1970.

Saltzer, Jerome H. and John W. Gintell. The instrumenta-
tion of Multics. Communications of the ACM 13, No. 8:
495-500., 1970.

Scherr, Allan L. An analysis of time-shared computer
systems. Cambridge, Mass., MIT Press. 1967.

Scherr, Allan L. Time-sharing measurement. Datamation 12,
No. U4: 22-26. 1966,

Schorre, D. V. Meta-II a syntax-oriented compiler writing
language., Proceedings - 1964 ACH National Conference. 1964.
Schwetman, H. D., Jr. 2 study of resource utilization and
performance evaluation cf largo-:calo computer =ystems.
Technical Systems Wote-12., Computation Center, University
of Texas at Austin. 1970.

Seaman, P. H. and ®. CT. Soucy. Simila

ting
systems. IBM Systems Journal 8, No. 4: 26U4-

PO
La UL
1

9

[e) R 9]

ope
279. 9.
SHARE Corporation. SHARE Education Committee, SHARE
Glossary. VNew York, N.Y., author, 1967.

Sherman, Stephen, Forest Baskett ITII, and J. C. Browne.
Trace driven modeling and analysis of CPU scheduling in a
multi-programming system. ACH Workshop on System Perform-

109

ance Evaluation Proceedings 1971: 173-199. 1971.

stanley, W. I. Measurement of system operational statis-
tics. IBM Systems Journal 8, No. 4: 299-308. 1969.

Stanley, W. I. and H. F. Hertel. Statistics gathering and
simulation for the Apollo real time operating system. IBM
Systems Journal 7, No. 2: 85-102. 1962,

Steel, T. B., Jr. Operating systems. Datamation 10, N>. 5:
26-28- 196“.

Teichroew, Daniel and John Francis Lubin. Computer simula-
tion - discussion of the technique and comparison of lan-
guages. Communications of the ACHM 9, No. 10: 723-741., 19€6.

These acronyms are taken from IBM reference manuals.

110

APPENDIX 2

ACRONYMS OF THE IBM OPERATING SYSTEY

No at-

tenpt has been made to include a complete set, but only to
include those which were used by the author.

BSAHN
CPyU
CSS
DCB
DEB
EXCP
FLIH
GPSS
ID
J0B
i/0
IPL
MVT
PRTY
PSW
QSAM
RQE
SMF
svcC
TCB
TIOT
UcB

Basic sequential access methoad
Central processing unit
Computer systen simulator

Data contrel block

Data extent bleck

Execute channel progran

First level interrupt handler
General purpose simulation systen
Identification

Input/output block

Input/output

Initial program load
Multiprogramming: variable tasks
Priority

Program status word

Queued sequential access method
Request gueue element

System management facility
Supervisor call

Task control block

Task T/0 tahle

Unit control block

11

RPPENDIX B

GLOSSARY OF TERHS

The following definitions were taken from either the IBM Opera-
tors Reference Guide(8) or the Share Glossary(26). Some of the
definitions have been modified to correspond with current
usage.

ACCESS METHOD... A method for transferring data between main
storage and a direct access storage or input/output
devices.

ADDRESS CONSTANT... A number, or a symhol representing a num-
ber, used in calculating storage addresses.

ALIAS... Another name for a member of a partitioned data set;
another name for an entry pocint of a program.

ALLOCATE... To assign a resource for use in performing a spe-
cific job, job step, subtask of a job step, or job sup-
port task.

APPLICATION PROGRAM... 2 problem state program written by a
user. A job.

ASYNCHRONOCUS... Without regqular time relationship; unexpected
or unpredictable with respect to the execution of a pro-
gram's instructiomns.

ATTACH (task)... To create a task and present it to the supar«
visor.

ATTRIBUTE... A trait; for example, attributes of data include
record length, record format, data set name, associated
device type and volume information, use, creation date,

12

etc,

AUXILIARY STORAGE... Data storage other than main storage.

AVAILABILITY... The degree to which a software/hardware system
is available when needed to process data.

EASIC ACCESS METHOD... Any access method in which each
input/output statement causes an input/output operation
to occur.

BATCH-PROCESSING... The cperational procedure of collecting
several jobs together to be input all at one time. The
operating system is then responsible for all scheduling
and execution. See also BATCHED JOB PROCESSING.

BATCHED JOB PROCESSING... A technique whereby job definitions
are placed one behind another on a common input device to
form a batch of job definitions tha*t are processed by the
CPU with as little operator intervention as possible.

BLOCK (records) ...
1. To group records to conserve storage space or to in-
crease the efficiency of access or processing.
2. A blocked record.

3. i portion of a telecommunicaticns ne
a unit of data trarsmission.

BUFFER, MAIN STORAGE..., An area of main storage that is tempo-
rarily reserved for use in performing an input/output op-

eration.
BYTE... Continnons storage egual 4¢ cight bits, ({Eight bits
in the IBM System/360 and System/370).

CALl... The transfer of ccntrol from one routine 4o another
routine,

CATALOG...

113

1. In the operating system, a collection of data set
indexes that are used by the control program to locate a
volume containing a specific data set.

2. To include the volume information for a data set in
the catalog.

CATALOGED PROCEDURE... A set of job control statements that
has been placed in a cataloged data set, called the pro-
cedure library, and can be retrieved by naming it in an
execute statement or started by the START command.

CENTPRAL PROCESSING UNIT... All that portion of a computer ex-
clusive of the input, output, peripheral and in some in-
stances, storage units. Also, a unit of a computing
system that performs the work of processing data by exe-
cuting predefined sequerces of instructions, such as add,
subtract, multiply, and divide instructions.

CHANNEL... A hardware device that connects a CPU and main
storage with input/output control units.

CHANNEL ADDRESS WORD... A word in main storage that specifies
the location ir main storage where a channel program
begins.

CHANNEL COMMAND WORD... A doubleword at the location in main
storage specified by the CTAW., One orf more CTWS make up
the channel program that directs the channel operations.

CLASS SCHEDULING... The concept of grouping jobs with simi
characteristics for input. Class scheduling attempts to
present a more optimal job mix *o the system.

COMMAND LANGUAGE... The set of commands, succommands, ard op-
erands recognized by the system.

COMMAND PROCESSING... The reading, analyzing, and P fo rmlng
i

T
of commands issued via a console or a system inpu

114

streanmn.

COMPUTING SYSTEM... A central preccessing unit together with
the main storage, input/output channels, control units,

direct access storage devices, and input/output devices
connected to it.

CONTROL BLOCK... A storage area used by the operating systenm
to hold control information.

CONTROL PROGRAM... A program that is designed %o schedule and
supervise the performance of data processing work by a
computing system.

CONTROL SECTION... That part of a program specified by the
programmer to be a relocatable unit, all of which is to
be load=d into adjoining mairn storage locations.

CPU TIME... The amount of time denoted by the central process-
ing unit to the execution of instructions.

DATA CONTROL BLOCK... A control block used by access routines
in storing and retrieving data.

ON NAME, .. A rame app

T ﬁ::?‘ﬂ ~ ~
-— N e Ao A b j . A=
of a program which corresponds to the
a definition statement.

DATA FILE...

1. A collection of related data records organized in a
specific manner. For examole, a payroll file (one record

for each employee showing his rate of pay, deductions,

etc.) or an inventorv file {one record for cach inventory

item, showing the cost selllng price, number in stock,
etc.).

2. In the operating system, a data set.

DATA MANAGEMENT... A major function of the operating system
that includes organizing, cataloging, locating, storing,
retrieving, and maintaining data.

115

DATR SET... The major unit of data storage and retrieval in
the operating system, consisting of a collection of data
in one of several prescribed arrangements and described
by control information to which the system has access.
(see also DATR FILE).

DEBUG... To detect, locate, and remove mistakes from a rou-
tine.

DEDICATION... Describing the assignment of a system resource

{(e.g., an I/0 device, a program, or a whole system) to
one application or purpose.

DIRECT ACCESS... Retrieval or storage of data
its lccation on a velume rather than rel
viously retrieved or stored data.

y reference to
i

b
ative to the pre-

DIRECT ACCESS DEVICE... A device in which the access time is
effectively independent of the location of the data.

DIRECTORY... An index that is used by the operating systems
control program to locate one or more sequential blocks
of data (called members) that are stored in separate par-
titions of a partitioned data set in direct access stor-
age.

DISABLED... A state of the CPU that prevents the cccurrence of
certain types of interruptions.

DISPATCHING PRIORITY... A number assigned to tacks to deter-
nine the order in which they will use the central proc-
essing unit in a multitask situation.

DUMP (main storage) ...
1. To copy the contents of all or part of main storage
onto an output device, so that it can be examined.
2. The data resulting from number 1.
3. A routine that will accomplish number 1.

116

DYNAMIC AREA... An area of main storage that is allocated for
performing job step or job support tasks.

ENABLED... 1A state of the CPU that allows the occurrence of
certain types of interruptions determined by the current
program status word.

EVENT... An occurrence of significance to a task; typically,
the completion of an asynchronous operation, such as an
input/output operation.

EVENT CONTROL BLOCK... A control block used to represent the
status of an event.

EXTERNAL REFERENCE... A reference to a symbol defined in arn-
other module.

EXTERNAL SYMBOL... A control sectiocn name, entry point name,
or external reference; a symbol contained in the external
symhol dictionary.

FACILITY...
1. A measure of how easy it is for people to operate,
use, and manage the use of a software/hardware systenm.
Together with system perforwmance, the [acility of a
system is a major factor cn which the total productivity
cf an installation depends.
2. A feature of the operating system designed to serve
a particular purpcse -- for example, the check-
point/restar* facility.

PIXED STORAGE APEA... That portion of main storage occupied by

.;
the resident portion of the control program {(nucleusj.

GENFRAL PURPOSE OPERATING SYSTEM... An operating system de-
signed to handle a wide variety of computing system ap-
plications.

GLOSSARY... A collec*ticr of glosses.

117

HARDWARE... The mechanical, magnetic, electrical, ard elec-
tronic devices from which a computer is constructed.

HARDWARE RESOURCES... CPU time, main storage space,
input/output channel time, direct access storage space,
and input/output devices, all of which are required to do
the work of processing data automatically and
efficiently.

HEXADECIMAL... A numbering system with a base of 16;

therefore, valid digits range from 0 through F, where F
represents the highest units position (15).

HIERARCHY STORAGE... A division of mzin storage that allows
hierarchy 0 and hierarchy 1 to be addressed separately.
For MFT and MVT systems with hierarchy support and an IBH
2361 Core Storage Unit, processor storage is addressed as
hierarchy 0, and the 2361 is addressed as hierarchy 1.
For MVT with hierarchy support, but with no 2361, there
are still ¢wo hierarchies: both are in processor storage.

"HUMAN ORIENTED" LANGUAGE... A programming language that is
more like a human language than a machine language.

T/0-PROCESSOR OVERLAP... The automatic process by which
channels contrcl I/0 operations while the CPU carries out
normal instruction execution.

[S S L

of control program options, language processors, I/0 sup-
port, application programs, and service programs designe?l
to mee* the needs of the users who require the extensive
facilities of & large operating systen.

IBM SYSTEM/360 OPERATING SYSTEM... A comprehensive collection

INITIAL PROGRAM LOAD... As applied to the system, the initial-
ization procedure that loads the supervisor and the job
control processor and begins normal operatiomns.

INITIATOR/TERMINATOR... A vart of the job scheduler. 1In an
MFT or MVT configuration of the control program, the

118

initiator/terminator selects a job from the input work
queue, allocates resources required to perform a step of
the job, loads and transfers control to the program that
is executed to perform the job step, and terminates the
job step when execution of the program is completed.

INPUT BUFFER... An area of main storage used to store a data
block received from an input device for processing by the
CPU.

INPUT JOB QUEUE... A collective term for the fifteen queues of
job informatior which the job scheduler uses to select
the jobs and job steps to be processed. EFach of the fif-
teen queues is associated with one input job class. (see
INPUT WORK QUEUE)

INPUT WORK QUEUE... A queue (waiting list) of job definitions
in direct access storage assigned to a job class and
arranged in order of priority assignment. Job defini-
ticns are entered into an input work queue by one or more
reader/interpreters, and are selected and removed by one
or more initiator/terminators.

INSTALLATION... A particular computing system in terms of the
overall work it does and the people who manage it, cper-
ate it, apply it to problems, service it, and use the
results it produces.

ITNTERACTION... In time-sharing applications, a basic unit used
to record system activity, consisting of acceptance of a
line of terminal input, processing of the line, and re-
sponse, if any. Interactions are recorded when a user
task starts its wait for a line of terminal input.

NTERRGPTION... A transfer of CPU con®trol t0 the Supervisor
that is initiated automatically by the computing system
or by a problem state program through the execution of a
supervisor call (SVC) instruction. The transfer of con-
trol occurs in such a way tha% control can later be
restored to the irterrupted program, or, in systems that
perform more than one task at a time, to a different pro-
gram.

JOB. LI

119

The major unit of work performed under operating systenm
control. A job consists of one or several related steps.
It is defined by a series of job control language state-
ments.

JOB CLASS... Any one of a number of job categories that can be

JOB

JOB

JOB

JoB

- o~

defined at an installation when using an MFT or MVT con-
trol program configuration. Fach job can bte assigned to
any one of several predefined job classes and each
initiator/terminator can be directed to initiate jobs
from one to three different classes. By classifying jobs
and directing initiator/terminators to initiate specific
classes of jobs, it is possible to control the mixture of
jobs that are performed concurrently.

CONTRCL LANGUAGE... A high-level precgramming language used

to code job control statements.

CONTROL STATEMENT... Any one of the control statements in

the input job stream that identifies a job or defires its
requirements.

MANAGEHENT... A major function of the operating system in-

volving the reading and interpretation of job defini-
tions, the scheduling of jobs, the initiation and termi-
nation of jobs and job steps, and the recording cf job
output datva.

PRIORITY... A value assiqned *o an MVT job that, together

with an assigned djob class, determines +he priority (rel-

ative *o other jobs) to be used o to be used in
scheduling the job arnd allocating resources %o it.

o~

- R | PR (I [~ h T — = 2o —_—— R — W A
STEP.es & Gnit 0f woIK f£Or the computing system from the

standpoint of the user, presented *o the system by job
control statements as a request for execution of a spe-

cific procgram and a description of the resources required
by it.

LINK LIBRARY... R partiticned data set which, unless otherwise

specified, is used in fetching load modules referred to

120
in execute statements and in other load type operations.

LINK PACK AREA... 2An arvea in upper main storage containing a
list of track addresses for routines that reside in
S¥S1. LINKLIB, routines from SYS1.SVCLIB and SYS1.LINKLIB
as selected by the user, types 3 and 4 routines, and
master scheduler ard system modules required resident by
systen tasks. The link pack area is set up by the nucle-
us initialization program (NIP) at the time of initial
program loading.

LINKAGE CONVENTIONS... A set of operating system conventions
that should be adhered to when passing control from one
program module to another. Adherence to the conventions
helps to ensure program sharing and compatibility.

LINKAGE EDITOR... A processing program that can be used to
combine program segments or modules that are independent~
ly compiled or assembled. The linkage editor also
enables a program that is too large for the space avail-
able in main storage to be divided so that executed seg-

ments of +he program can be overlaid by segments yet to
be exeacuted.

LOAD... To place a program intc main storage so that it can be
executed.

LOAD MODULE... A program or part of a program formed of one or
more object modules, the object modules, that is readvy *o
be loaded intc main storage by the control program for
execution by the CPU.

UMACHINE ORIENTED" LANGUAGE... A programming language *hat is

more like a machine language +than a human or mathematical
ilanguage.

MACRO INSTRUCTION... An instruction in a source language that

is equivalent to a specific sequence of machine instruc-
tions.

MAIN STORAGE... The storage in a computing system from which a

121

central processing unit can directly obtain instructicns
and data and to which it can directly return results.

MAIN STOPAGE REGION... In an MVT control program configura-
tion, a section of main storage that is allocated by the
control program for use in performing a job step or a job
support task.

MASTER SCHEDULER... A part of the control program that serves
as a two-way communications link between the operator and
the system, usually by way of the operator's console. It
is used to relay messages from the system tc the opera-
tor, to execute operator commands, and to respond to
replies from the operator. 1In MFT and MVT control pro-
gram configurations, the master scheduler is used to
start and stop the reader/interpreter,
initiator/terminator, and output writer tasks.

MULTIPROCESSING... A technique whereby the work of processing
data is shared among two or mere interconnected central
processing units under integrated control that directly
or indirectly communicate with one another, other than
through direct human intervention,

MULTIPROCESSING SYSTEM... A computing system employing two or
more interconnected processing sys interconnected proc-
essing units to execute programs simultaneously.

MULTIPROGRAMMING... A technique by which a computer sSystem can
interleave execution of two or more generally unrelated
programs, parts of which are residing together in main
storage.

NETWORK... In teleprocessing, a number of communication linas
connecting a computer with remote teruminails.

NUCLEUS... The portion of a control program that always
remains in main storage.

OPERATING SYSTEM... An application of a computirg system, in
the form of organized collections of programs and data,

122

that is specifically designed for use in creating and
controlling the performance of other applications.

OPERATIONS STAFF... The members of a data processing installa-
tion who receive jobs from the programmers, schedule the
order in which the jobs are presented to the system and

performed, and direct the overall operation of the systenm
in performing the jobs.

OPERATOR... A member of a data processing installation opera-
tions staff who is responsible for directing the opera-
ticn of a computing system. The same, or a different op-
erator, may perform routine functions such as mounting
tape reels and loading card decks.

CUTPYUT BUFFER... An arca of main storage used to store a data
block before it is transferred to an output device.

OUTPUT CLASS... In an MFT or MVT control program configura-
tion, any one of up to 36 different output classes,
defined at an installation, to which output data produced
during a job step can be assigned. When an output writer
is started, it can be directed to process from one to
eight different classes of output data.

OUTPUT WRITER... A part of the job scheduler that writes out-
put data sets onto a system output unit, independently of
the program tha+t produced such data sets.

Y... Tc place a lcad mecdule or segment cf a lcad medule
intc main storage locations occupied by another (already
e

PAGING... The process of transmitting pages of information be-
tween mairnstorage and auxiliary storage, especially when
done for the purpose of assisting the allocation of a
limited amount of main storage among a number of concur-
rantly executing progranms.

PERFORMANCE... Together with facility, one of the two major
factors on which the total productivity of a hard-

123

vare/software systen depends. Performance is largely de-
termined by a combination of three other factors:
throughput, response time, and availability.

PHYSICAL RECORD... 1A record that ig defined in terms of

physical qualities rather than by the information it con-
tains.

POST... To note the occurrence of an event.

PRIORITY... The relative standing a job or task has in the

system as opposed to the other jobs and tasks in the
system at a given time,

PRIORITY SCHEDULING SYSTEM... A form of job scheduler which

uses input and output work queues tc improve system per-
formance.

PRIVILEGED INSTRUCTION... An instruction that can only be exe-
cuted when the CPU is in the supervisor state.

PROBLEM STATE... A state of the central processing unit during
which input/output and other privileged instructions
cannot be executed. Opposite of supervisor state.

PROBLEM STATE PROGRAM... Anv program that+ is executed when the
central processing urit is in the problem state. This
includes IBM-distributed progranms, such as language
translators and service programs, as wsll as progranms

written by a user.

PROCESSOR...
1. In hardware, a central processing unit (CPUj.
2. In scftware, 2 prchblenm state program such as a lan-
guage translator or service program that is usuwally pro-
vided by IBM and is widely used at an installation.

PRODUCTIVITY... A measure of the work performed by a soft-
ware/hardware system. Productivity largely depends on a
combination of two factors: the facility (ease of use) of

124

the system and the performance (throughput, response
time, and availability) of the systen.

PROGRAM... 1 logically self-contained sequence of instructions
that can be executed by a computing system to attain a
specific result.

PROGRAM STATUS WORD... A doubleword in main storage used to
control the order in which instructions are executed, and
to hold and indicate the status of the computing systen
in relation to a particular progranm.

PROTECTION KEY... A task-oriented indicator (key) that appears
in the current PSW whenever a task is active (i.e., has
control of the system); this indicator must match the
storage keys of all main storage blocks that the task is
to use.

QUEUE.., A waiting line or list.

QUEUED ACCESS METHOD... An access method that automatically
governs the movement of data hetween the program using
+he access method and the input/output devices.

READER... A software device which reads a system input stream
irom a specific input device and deposits it in the iaput
gueue with pointers to its data on scratch disk space.

READER/INTERPPETER... 1A par*t cf the job scheduler that reads
and interprets a series of job definitions from a job
input streanm.

RFAL-TIME APPLICATION... An application in which a CCmpiting
systen is used to assist in or guide a process while the
process actually transpires.

RECORD... One or more data fields that represent an organized
body of related data, such as all of the basic accounting
information concerning a single sales transaction.

125

RELOCATABILITY ... The ability of a program (in the form of a
load module) to be dynamically loaded anywhere in main
storage.

RESPONSE TIME...
1. The time between the submission of an item of work
to the computing system and the return of the rasults.
Loosely, turnaround time.
2. In online systems, the time between the end of a
block of user input and the display of system response at
the terminal.

RETURN CODE... A number placed in a designated register (the
"return code register®) at the completion of a program.
The number is established by user-convention and may be
used 4o influence the execution of succeasding pregranms
or, in the case of an abnormal end of task, it may simply
be printed for programmer analysis.

ROUTINE... A part of a program or subprogram that may have
general or frequent use.

SEIZE... In simulation, the action of seizing a facility to
prevent other transactions from using that facility.

SERVICE PROGRAN... A processing program such as The linkage
editor, sort/merge program, or a utility program that is
designed mainly to perform specific services for a user
of the progranm.

SETUP... The act of preparing a computing system to perform a
job or job step. Setting up is usuvallv performed by an
operator or assistant operator arnd often inveclves

performing routine functlion, SUCh as mounting tape reels
and loading card decks.

SETUP TIME... The time required by an operator to prepare a
computing system to perform a job or job step.

SOFTWARE... The totality of programs and routines used to

126

extend the capabilities of computers, such as generators,
compilers, assemblers and operating systems.

SPOOLING... The process of reading job information from a
physical reader and making the information available on a
faster device. Spooling depends on multiprogramming for
concurrent operation of the spooling progranm and allows
virtual card readers for multiprogramming. Spooling may
also be applied to the output of data.

STORAGE BLOCK... An area of main storage consisting of 2048
bytes to which a storage key can be assigned.

STORAGE DUMP... A listing of the contents of a storage device
or selected parts of it. Synonymous with memory dump and
core dump.

SUBPROGRAM... A sequence of instructions stored in a library,
that can be incorporated as part of a program.

SUBROUTINE... A relatively short sequence of instructions that
can be incorporated irto a program to perform a specific
function, such as finding the sguare root of a number.

-1
AONe

SUBTASK... 1} task that is initiated and terminated by a higher
T

~ e N aa
vLue L

SUPERVISOR... A major part of t+he operating system control
program that is executed when the CPU is in the supnervi-
sor state. The supervisor directs and controls the exe-
cution ¢f problem state programs end provides them with a
variety of services.

SUPERVISOR CALL INSTRUCTION... An instruction that interrupts
the program being executed and passes control to the su-
pervisor for the purpose of performing a specific service
indicated by the instruction.

SUPFRVISOR STATE... A state of the central processing unit
during which input/output and other privileged instruc-

127

tions can be executed.

SYNCHRONOUS... Occurring with a regular or predictable time
relationship.

WO =

SYSIN,.. & system input stream, also a name used as the data
definition name of a data set in the input strean.

SYSOUT... A system output stream. Also, an indicator used in
data definition statements to signify that a data set is
to be written on a system output unit.

SYSTEM...

(1) An assembly of components united by some form of reg-
ulated interaction +o form an organized whole. {2} A
collection of consecutive operations and procedures re-

quired to accomplish a specifc objective.

SYSTEMS ANALYSIS... The examination of an activity, procedure,
method, technique, or a business to determine what must
be accomplished and hcw the necessary operations may best
be accomplished.

SYSTEM AVAILABILITY... The portion of time a sys*em is or can
be used for productive purpcses.

SYSTEM GENERATION... The process of using one operating systen
to assemble and link together into a coherent whole all
the required, alternative and optional parts that form a
new operating systen.

SYSTFM INPUT DEVICE... A device that is assigned to read a jecb
inpit stream.

SYSTEY MANAGEMENT FACILITIFS... An optional control program
feature that provides the means for gathering and

recording infermation that can be used to evaluate systen
usage.,

128

SYSTEM PROGRAMMER...
1. A programmer who is assigned to plan, generate,
maintain, extend, and control the use of an operating
system with the aim of improving the overall productivity
of an installation.
2. A programmer who designs programmning systems and
other applications,

SYSTEM QUEUE AREA... An area in main stcrage adjacent to the
fixed main storage area. The system queue area is set up
by the nucleus initialization program (NIP) at +the time
of the initial program loading.

SYSTEM RESIDENCE VOLUME... The volume that contains the IPL
program, the volume index of the SYSCTLG data set, and
the system data sets. The system residence volume must
reside on the I/0 device which is addressed when initial
program loadirg is perforned.

TASK... An independent unit of work that can compete for the
resources of the systen.

TASK CONTROL RLOCK... The consolidaticn of control informatien
related to a task.

ISPATCHER... The control program routine that selects
from the task gqueue the task that is to be performed by
+he central processing unit.

K D

=
:Dl
[64]
peo

TASK MANAGEMENT... The part of the supervisor that controls
and directs the concurrent performance of data processing
tasks.

TELECOMMUNICATIONS... The transmission of messages from one
locaticn to another over telephone and other communica-
tion lines.

THROUGHPUT... The total volume of work performed by a comput-
ing system over a given period of tine.

129

TIME-SHARING... A method of using a computing system whereby a
numker of users can concurrently execute programs with
which the users may interact during execution, and gener-
ally be assured some minimum amount of program execution
per unit time.

TIMNE SLICE... A uniform interval of CPU time allocated for use
in performing a task, Once the interval is over, CPU
time is allocated to another task. Thus, a task cannot
monopclize CPU time beyond a fixed limit.

TRANSACTION... The units of treffic that are created and moved
through processing blocks by a simulation language.

TURNAROUND TIME... The time required for a job tc pass through
the entire system; the difference between the time the
job is returned to a pick-up station and the time the job
was submitted to the station.

UNIT ADDRESS... The three-character address of a particular
device, specified at the time a system is installed.

UNIT AFFINITY... Forced allocation of a data set on the sane
unit as another data set.

USER. ..
1. Arycne who requires the services of a computing
system.
2. Under time-sharing systems, anveone with an entry in

a user attribute or accounting data se*; anyone eligible
to log on the systen.

UTILITY PROGRAMN... A standard routine used 0 assist
operaticn of the computer, e.g., a conversion routine, a
sorting routine, a printout routine, or a tracing rou-
tine,

VIRTUAL MEMORY... A conceptual form of main storage which does
not really exist, but is mads to appear as if it exists
through the use of hardware and programming.

130

VOLUME... A section or unit of auxiliary storage space that is
serviced by a single read/write mechanism whose operation

is entirely independent of any other read/write mecha=
nism.

WAIT CONDITION... The condition of a task that needs one or
more events to occur before the task can be ready to be
performed by the central processing unit.

WAIT STATE... The state of the system when no instructions are
being processed, but the system is not fully stopped.
The system can accept I/0 and external interruptions, and
can be put through the IPL procedure.

WRITER.,.. A scftware device which selects data sets from des-
ignated output classes of the output queue, and routes
them as an output stream to a physical output device.

131

APPENDIX C

DATA COLLECTION MONITOR PROGRAM LISTING

The program used to produce the monitor data is listed on
the fcllowing pages. This listing is provided as an example of
the extreme system dependence of such a program. In many
places the addresses to be modified are not apparent. Only
careful study will produce the correct results. Also notice
+he medularity of the program and how i+t must all fit together
into one system. The use of WAIT and POST is the only reliable

way to communicate between the various parts of the monitor.

Lroc

000000
000000
000004
00000C
000010
000012
000012
000016
00001
000012

00099%

000102
000105

0001286
000127
00012z
000130
000134
000138
00013cC
000140
000144
0001438
00014C
000150
000155
00615a
000160
0001€6
00016C

000178
00017C
000180
090184
0001€3
00018C
002190
ooC1°24
006193

000108
0001DE
00015y

STATISTICS

OBJECT CODE

Q7FF

Q00C

ADDR1

07C3D6D3D3CHCIED

S0EC
05c0

5000
4110
501D
1801

9110
4780

4111
5010
1861
5010
5110
5010
SE10
5010
Sr10
4111
5010
D703
5810
D203
D203
D203
D203

5006
4166
5060
5810
5811
5811
5010
0703
p703

0703
0501
4770

boocC

c906
€902
aoo0a

ca72
€374

0008
Ca3a

CROA
Cau2
Ch12
CAlE
CAlA
CriE
010C
CAOE
CAUE
0010
6000
6004
6008
600C

0010
0014
Ca3n
0010
0000
0004
CA3E
CA2A
CA2E

CA2A
Cace
c374

CU4E

1008
100C
1038
1054

crL22
CL2E

CL2A
CLD3

00A8L

00A60

00000
00004
00008
0000C

00A3C
00R40

00A3C
OOAEQ

ADDB2

0000C

0000C

00918
00914
0o0oo8

00386

00008
0oA4C

00RNIC
00ASY
00a24
00A30
oon2c
00R30
0010C
00a20
00a50
00010
00008
0009C
00038
00054

Q00 10
000 14
00n4c
00010
00000
00004
00450
00A3C
o0ru0

00a3C
00AzES
00335

STMT

108
109
110
111
112
113
114
115
118
119
120
121
122
123
124
125
126
127
139
143
144
45

MODULES FOR IO ACTIONS

SOUPCE STATEMENT

COLLECT

*

TCFHP

PRINT
CSECT
BC

pC
sSTH
BALR
USING
ST

LA

ST

LR

NOGEN
A STUDY IN ASYNCHRONOUS ROUTINES

15,12 (15)

X*07*,CL7'COLLECT?

14,12,12(13)

12,0 .

., 12

13,SAVE+Y

1,SAVE

1,8(13)

13,1 SAYE AREA SET UP

ISSUE WRITE TO OPERATOR

WTO L] %% L2 2 *xk Tt £ 23 P X 24 EE 2 EE 2
wro ° UNLESS YOU LIKE TO IPL,*
WTO Ot CANCEL THIS PROGRAN BY®
§TO0 ¢ REPLYING "GOTIT" ONLY?
WTOR ¢ SIGNED ... DALA',REPL,5,0PECE
OPEN (TAPES,OUTPUT)

EQU X*89E*

REGS

™ TAPES+48,X* 10" IS IT OPEN 2

BZ HELPOT

GETMAIN R®,LV=32768,4IARCHY=1

LA R1,8(R1)

ST R1,CURLNG

L® R6,11

ST R1,BUFAD1

A R1,LENG

ST R1,HTPOINT CURRENT HIPOINT FOR STAGT
s 1,SAFED

ST 1,DANGER

A 1,SAFED

L? R1,268 (%1)

ST R1,BUFAD2 SECOMD BUFFER

xc TAPES+12(4) ,TAPES+12

L 1,16

MVC 0(4,6),8(1) LINKLIE DCB

¥VC 4(4,6) ,12(1) JO2QE DCE SOMEWHERE HERE
uvc 8(4,6),56 (1) DATE

MVC 12(4,6),8u8(1) SVILIR DCP

TIME BIN

ST 0, 16 (6)

Ly 6,20(6)

ST 6,CURLNG

L 1,16

L 1,0 (1)

L 1,401

ST 1,CURTCH

xc OPECE (4) ,0PECE

XC TIMECB(U) ,TINEC®

4TOP *2EPLY GO TO BIGIX COLLECTION',REPL,2,0PECE
WAIT ECB=OPECB

xC OPECRB (4) ,0PECP

CLC REPL(2) ,0KREP

BNE HELPOT

P150CT70

k%t

PAGE 1

8/27/714

I0ST0020
10ST0030
I0STQ040
I0STO0SO
I0OSTOO060
I0ST0070
TO0ST0080
I0ST0090
I0ST0 100
I0ST0110
I0STO120
I0ST0130
I0STO 140
I05T0150
I0ST0160
I0ST0170
I10ST0180
TI0ST0190
I105T0200
I0ST0210
105T0220
105T0230
I0STO240
IOST0250
I0ST0260
I0ST0270
I0sT0280
I0ST0290
I0ST0300
T0ST0310
I0ST0320
I0ST0330
I0STO340
I105T0350
10ST0360
I0ST0370
IOSTO0380
I05T0390
T10STO400
I0STO410
I0OSTCU20
10STOU30
I0STOLYO
IOSTOUS50
I0STQ460
I0STO470
I10sTOu480
105T0u90
I0STOS00
I0ST0510
I0ST0520

TOST0530

ICSTOS540
I0OSTO0S550
I0ST0550

el

Loc

N001EQ
0001:C

0001F1
0001 =
000202
000206
0002cA
00026>
900212
000216
00021C
. 000222
000225
00022n
000230

0002L86
00024c
0002590

000250
000258
000258
00025¢
0002€£0
000264
000268
00926C

000282

000224
000228
0002arE

0002F4
0002FA
0002FE
000302
000304
000308
00030C
00030E
000312
0001316
000311
000312

STATISTICS MODULZS

ORJECT CODE ADDR1

S8190
OtFE

S140
4710
5220
5830
£833
5833
5032
0202
2703
4542
4040
D703
D703

2140
4710

9101
4780
4580
917F
47EQ
9140
4780
S40F

47F0

47F0
D504
u780

D703
47F0
5810
OAFE
5850
5360
1965
4740
5850
SBS0
5850
5830

c996

CA2A
c296
CA2E
0010
0058
oooe
000u
CALAT
CP2E
0000
CAAC
CAT76
CA16

CA16
c276

CAB6
C24A
c382
CA76
C2EC
CA16
c1DpC
c758

cipcC

C23E
CACE
C2EC

CR22A
Ci1DpC
CS9R

CAQE
CA3a

c304
CAOA
C9D2
c9D2
0010

00A3C

CA2F OOREQ
CA2E OO0AUO

CA76 00A88
CA16 00A2%8

00A28

00A98

00288

00A28

00760

CAD3 OOAEO

Ca2A 00A3C

FOR IO ACTIONS

AODLER2

009AR

00248
o0AU0
00010
00058
0000%
00004
00rLl
00ALO
00000
OOAEE
o088
00A28

0,288

0025C
00394

002FE

OO1EE

O01EF

00250
00RrES
QO02FE

00A3C
Q001EE
009AC

00A20
ooauc

00316
00AR1C
009E4
009E4
00010

160
161
162
163
164
165
166
167
168
169
170
173
178
179
180
181
182
183
184
185
186
187
188
189
180
201
202
213
217
218
219
220

232
233
234
23S
236
237
238
239
240
241
242
243

SOUFCF STATSMENT

* NOW INITIALIZE EZVERYTHING

dHER

=
*
uepaAT
*

COoNPE

L
SVC

1,INITZ ADDRZISS OF INITIALIZATION OUTINE

254 HEIPE WE 30 ...

eew INITIALIZATION OVE:r

FAIT

GOT SOMETHING ... Cri

gy]
eo

L

L

L

L

ST
avc
XC
LH
STH
X<
xXC
EXCP
dAIT
By}
BO
EQU

START AUTOMATIC UPCATE FOR ARITING PECORDS

1, FCBLIST=ECES

LCK IT OUT

OZECE,Y'UQ"

OPACT OPEPATI? WANTS SOMITHING
2,TIMECB LOCATION OF OUTPUT

3,16 CVT ADD?ESS
3,88(3) PSEUDO CLOCKS
3,8(3) LOCAL PSEUDO CLOCK
3,4(2)

CCuS+1(3) ,~TNECH+1
TINEZCB(4) ,TINECE RESET THr ECE
R4,0(R2) LENGTH FIZLD

B4, CCRS+E

EECB (4), T =CE CLEAR ECE
DANGECH (4) , DAN5ECS

IOADK

1, ECBLIST=DESE

DANGECS,X'40"

HANGIT

*

* JAIT FOE COMPLETION OF ZXCP

HANGIT

OPACT

QUTOIIT

BOFR2

T4
az
3AL
TY
BNO
by,
BZ
NI
DEQ
B
ENQ
WAIT
B
CLC
BE
WTOR

CSHF+4,X* 01 EOV BECFSSARY 272
=48

R8, FOVS END OF VOLUME PROCESSING
EECS,X'7F¢ NORMAL CONPLETION
OUTOFIT

DANGECE,X*40"

UPDAT

ENQD1+1,X'0F?

(ON4,RNY42,,SYSTEHN) ,RMC=SYSTEM

UPDAT
{QONY4,RNM2,E,,SYSTEN) , SHC=SYSTEY
1,ECB=EECS
COMPE
REPL (5) ,0KREP
OUTOFIT

IS THE REPLY VALID

?

F150CT70

*CAREFUL WHAT YOU SAY...THATS NOT 2 VALID REPLY®,

BREPL,S5,0PECB

OPECB(4) ,OPECB

UPDAT

1,REDOS SYSTEM FIX-UP ROUTINE
254

S,BUFAD2

6 ,CORLNG

6,5

BUFR2

S,BUFAD1 CHANGE BUFFERS
5, FOUR

5,FOUR

3,16 CYT ADDRESS

PAGE 2

e/27/71

10ST0570
I05T0580
10ST0590
I0ST0A00
I0STO0E10
10570420
I0ST0630
I0STO640
IOST06S0
I0STOE6O
I0ST0679
INST0630
10ST0690
10ST0700
YO0ST0710
10576720
10ST0730
I0STO740
I0ST0750
10ST0760
I10ST0770
10ST0780
10ST0790
10ST0200
I0STO0810
10570820
10STO830
10STO08LO
I0ST0850
I0ST0860
I0ST0870
10570880
10ST0890
I0ST0%00
I0ST0910
I10ST0920
I0ST0930
I0STO940
I10ST0950
I0ST0960
10ST0970
X105T0980
I10ST0990
I0ST1000
I0ST1010
10ST1020
I0ST1030
I0ST1040
I0ST1050
I0ST1060
10ST1070
I10ST1080
10ST1099
I0ST1100
I0ST1110

E€iL

STATISTICS ¥ODULES POR IO ACTIONS PAGE 3

P150CT70 8/27/71

LOC OBJECT CODE ADDR1 ADDK2 STAT SOURCE STATEMENT
000322 5833 0058 00058 2064 L 3,88(3) PSEUDO CLOCKS I0ST1120
000326 5833 0008 00008 245 "L 3,8(3) LOCAL PSEUDO CLOCK I0ST1130
00032K 5035 0004 00004 246 . sT 3,4 (5) STORE INTO OUTPUT IOST1140
00032E 1B65S 287 SR 6,5 I0ST1150
000330 D703 5000 5000 00000 00000 248 xcC 0(4,5),0(5) CLEAR LENGTH FIELD I0ST1160
000336 4065 0000 00000 249 STH 6,0 (5) : I0ST1170
00033 4060 CxAC 00ABE 250 STH R6,CCWS+6 I0ST1180
00033E S050 CA2E 00240 251 ST R5,TIMECB : I0ST1190
000342 D202 CAA7 CA2F O00AZ9 00341 252 BVC CCHS+1(3),TINECB+1 DATA ADDRESS IOST1200
000348 D703 CA76 CA76 00AE8 00A88 253 xc BECB (4) ,EECB IOST1210

254 EXCP IOADR I0ST1220

257 VAIT 1,ECB=EECB . I0ST1230

00035E D703 CA76 CA76 00A88 QOASE 261 xc EECB (4) ,EECB) IOST 1240
000364 4110 CAAE oorco 262 LA R1,TPHK I0ST1250
000368 S010 CaA8A 00ASC 263 ST R1,CSUF+8 NOW WRITE TAPEXARK I0ST1260
’ 264 EXCP TIOADR I0ST1270

267 WAIT 1,ECB=EECB 10ST1280

271 * OUT NOW ... READY FOR ANALYSIS 10ST1290

272 CLOSE (TAPES,} 105T1300

000386 S58D0 C906 00918 278 HELPOT L 13,SAVE+U IOST 1310
00038X 98EC DOOC 0000C 219 Ly 14,12,12(13) I0ST1320
00038E SCPF 280 SR 15,15 : I0ST1330
000390 O7FE 281 BR 14 00T ... OUT ... OUT I0ST 1340
282 EOVS ENQ (QNM, RNN,E,,SYSTEM) ,SHC=SYSTEHN I0ST 1350

293 EOV TAPES I0ST1360

296 DEQ (QNM,RNY4,,SYSTEY) ,RMC=SYSTEHN JOST 1370

O00O03EE D703 CAUE CALE 00A60 00A60 307 xc TAPES+12 (4) ,TAPES+12 I0ST1380
0003C4 4188 0008 00008 308 LA R8, 8(R8) I0ST 1390
0003Cc8 07Fr8 309 BR R8 JOST 1400
310 * IOST1410

311 * END OF VOLUME ROUTINE JOST1420

312 = I0ST1430

313 DKOP 12 IOST 1440

hEL

135

0161 LIS0I
00611S0X
06811501
08811S01
0L811S01
09811S0I
06811S0X
0h811S01
0EBLISOX
0Zsilsox
018L1ISOI
008LISOIX

08L11S01
0LL1ISOI
osLLisol
0GgLtisor
ohLLlsor
OELLISOX
0ZL11S0X
olLilsol
00L11S01
06911s0I
08911S0X
0L91L1S0T
09911501
0591 1S0I
0h911s0I
0€9L1S01
QZ9tis0I
019131S0I
009L1sS0I
06G1L1SOL
08511S0I
0LSLISOT
09G11S0X
06511801
0tSLiSOL
O0ESLLISOI
0Z511S01
0LGL1ISOI
006t1S0I
06h1L1sS01
08n11S0OI
0LnlIsSO1
09nilsol

LL/Le/s

f Jo¥4

0L120G14d

Z aosa
nt L4
FLVLIS Kvesosd Ol 3oV 110aX*EE 10
Z14asId’ (€4°Z1)on DaAR
tlasta’ (ey’ot) 9 JAR
X¥IR3 ¥3IHOIVASIA (Lu)9t ‘cxy 1
& d131dRO0D 4NXId usao’ (o’gl ozt JAH
3820’ (€°1) 09 DAR
dox3o’ (€’n)o JAR
(o’c 1
93119534 3ISYEH 2« SNISO
0’z u1vg licady
z doyd
ZLINI 30 InO hi L
g0rf 3HI 804 IIV1S 20SIA¥3ANS sh0sX’€E IAW
ZAKILNOR’ (EE’0L) 12X OAR
(€s) sZnex*{Z1)Z1dSI10 JAW
LaRIINOR® (€8°0L) 9 DJAR
{€)9’ (ot)Lldsia JA%
¥3HOL¥ASIA 40 Sss3yaay (t¥)oL’‘cy 1
§3HIIVASIT FHI 804 FZIIVILINI *
$$330AV IJNYYILNI et 'h 1s
AVIdINI®Y 1
0ozt * (0*n)oz2L ox
haGl °"°° Gl JAS (€) 09°n is
avgga‘’h 1
dsx3 0 JAS (€)o’n is
avaosxa’n 1
0zL’ (g} usdo JAN
(€)09”* (n) ¥d3o JAN
(€) o’ (n)ddox3o JAR
DHONEIL t)o’e 1
a3avol 349 0l MSsd Z+nsd’c H1S
Y35V IAVS 1dNnd¥3INI Z+IIANS'E HIS
Z+33AVYS’E H1S
Z+IANS’E H1S
Z+L8483N°E HLS
Z+u¥3N’E H1S
(1)zi’'e 1
Z°s 9NISD
0’z J31vdg

£ d

SkVYE8908d 3HL FZITVILINT €

>

Py

*
ZI11INI

INIRILYLS 3DdL0OS

09¢
6G€
8GE
LSGE
E21Y
SSE
nGE
€9€E
¢SE
LGE
0GE
61E

LuE
9ne
ShE
fHhe
[311
he
LhE
OhE
6t€
8EE
LEE
9€E
SEE
neE
€€E
[4%2
LEE
0€E
6Z¢t
8CE
Lee
97¢
T4
X4
€Z€
(X4
(X4
ozt
6LlE
8LlE
LLE
S1E
SLE

IwlS

¢d600
83600
01000
80600
04600
22600
00000

YOovoo
22000
34600
90000
0L 000

24000
81600
84000
J£000
74600
00000
08600
84000
J£000
00000
00000
81800
30800
06L00
98L00
20500
34500
20000

cdaaay

L0

12000 LZ00 L09s
82000 ¢85¢ 870t €024
90000 8¥SZ 900t 602Q
0L00 LEBS

8L000 86GZ 8L00 LoOZG
J£000 065Z OE0E €02a
00000 O8S¢C 000E EOCA
0000 LEBS

0Zs0

34L0

L2000 LZ00 %026
Zno00 3I£3Z ZH0E 602a
24600 Zh0E 929Z 8024
90000 CZE9Z 900t 60Ca
83600 900€ D19C 602d
0100 LESBS

JL00 0nOS
23GZ Oh8BS
8L000 8L00 B8L00 €2¢Q
J€00 €105
83GZ 0Ongs
0000 €h0S
h3sZ 048sS
8a600 8L00 2092 Lvzd
0a600 DJEQE HO9Z €0Za
30600 O00E 009 €0cd
0000 Lg8S
onnZ 0E0n
Zutl O0EOn
ho€Z QEOoh
VH€Z 0EOh
00ZZ CEON
ZdLZ Ceon
2000 Less

ceZso

Ldaav 340D 1230€0

S1I1X3d 3IHL FZITVILINI

Yon000
994t000
091000
Y5000
9645000
05h000
'hno00
w1000
0hh000
0ht000
2¢€h000

2€1000
8EHD0O0
Z2€n000
2T1n000
9Zn000
0Zh000
211000

811000
Hin000-
304000
¥01000
90h000
Z20h000
algo000
84E£000
Z4€000
J3€000
83€000
©d€000
03€000
24£000
8d€000
hd€000
04€000
22£000
22¢000
¥2€000

Y2t 000

201

Loc

000u46C
000462
000U6E
000u72
000476
000472
00047E
oQousg2
000486
QQ04RA
0Qouse
000492
000496
000498
ooouac
0oQoun2
0004 A6
0004AC
00oun2
0004B6
0004ER
0004BE
oo0o4c2
Gaoucs
000ucE
0004Dy

0004 DA
0004DE
0004EN
0004xs8
0004 EC
0004F2
0004F6
0004FA
QO00U4UFE
000502
000506
00050¢C
000510
000514
000518
000S1E
000522
000526
00052
000530
000534
000538
00053C
00053F
000542
0005u8
00054¢C
000550

NE¥ EXCP LOCATION

OBJECT CODE

0520

92F0
900F
5860
9200
5870
5877
5887
SE87
5890
8R90
1F89
5080
D203
4166
D204
D202
4166
5871
9110
4780
D201
D200
D202
D200

5887
D502
4770
4188
D200
4166
9180
4780
4188
5888
D20F
92FP
91A0
4780
D205
4166
9520
4770
D207
4166
5884
92FF
1288
4780
D207
4166
92FF
D501

2ua5
24EE
25DE
6000
0010
0058
Q000
Q004
0050
0001

252E
6001
0004
6001
6007
0003
0018
7030
2126
6007
6009
600A
600D

0o02c
1015
2126
0000
600E
0001
T01A
2094
0010
0020
600E
601E
8010
2084
601E
0005
8012
20C6
601F
0008
000cC
601F

2102
601F
0008
601F
7028

252E

1000
1015

T01A
7024
7022
7030

8019

8018

8000

801cC

1020

8000

255

ADDE1

00913

00000

00001
000601
00007
00030
00007
00009

00001
0000D

00015

0000E

0001a

ADDR2

0095¢C
0orucC

00010
00058
00000
00004
00050
00001

0099C
0099C
00004
40000
00015
00003

00014

00594
00011
00024
00022
00030

0002C
00019
00594
00000
00018
00001

00502

. 00010

0000E
0001E
00010
0001E
00012

0001F

00017

0001tF

0001F
00028

00020
00000

00522
0001cC
00005

00534
00020
o00cCs8
0000C

00570
00000
00008

009c8

STET SOUECE STATEMENT

362 NEXCP

372
373
7u
375
376
377
378
379
380
381
382
333
384
335
3¢6
387
388 * UCE
389
390
391
392
333
394
395
396
307
338 1502G
359
400
401
up2
403
404
405 NOVOL
L0s
407
sos*
409 XODASD
810
411
412
413
414
415
41€

BALR
USING
BVI
STH
L
HVI
L

L

L
AL
L
SRA
SLR
ST
NvVC
La
xvc
NVC
LA
L
b8
BZ
Nve
uve
BvC
uve

F150CT70

2,0
¢,2 BASE REGISTER

SAVE~1,C*0°*

0,15,ERRSAVE

6,CURLNG CURRENT LOCATION IN BUFFER
0(6),X'00' EXCP RECORD

7,16

7,X¢58* (7) PSEUDO CLOCKS

8,0(7) SHPC

8,4(7) T4PC

9,80 TINER

9,1

8,9 TIKE IN TIMER ONITS (ALMOST)
8,ERRSAVE+64

1(4,6) ,ERRSAVE+6U

6,4 (6)

1(5,6),0(1) 108 INFO
7(3,6) ,21(1) DCB ADDRESSS

6,3 (6)
2.,20(%) DCB ADDRESS

48(7) ,X110¢ IS IT OPEN ?
NOWRT

7(2,6) ,26(7) DSORG
9(1,6} ,36(7) RECFYN

10(3,6) ,42(7) MACRF & IFLGS
13(1,6) ,48(7) DCBOFLGS

INPORNATION

L
CLC
BXE
LA
NvC
LA
ks
BZ
LA
L
nve
NVI
™
BZ
uve
LA
CLY
BNE
nve
LA
L
3VI
LTR
82z
Bve
La
NvI
ClC

8,44 (7) DEB ADDRESS
21(3,1),25(8)

NOWRT
8,0 (8)

14(1,6),24(8) PROTECT KEY

6,1(6) FOR PROTECT KEY

26(7) ,X*'80' INDEXED SEQUENTTAL ?
ISORG

8,16 (8) FOR IS

8,32 (8) UCB ADDRESS

14 (16,6) ,0(6)
30(6) (X'FF?
16 (8),X'A0"
NOVOL

30(6,6) ,28(8) VOLUME=SER
6.5 (6)

18 (R8) ,X*20"

HODASD

31(8,6) ,32(1)

R6,8 (R6)

8,12(u)

31(6) (X'FF?

8,8

NONANE ¥O TIOT
31(3,6),0(8) JOBNAME
6,8(6)

31(6) ,X'FF?

40 (2,7) ,2ERO

FLAG IF NO VOL SER

PAGE S

8/27/71

10ST1930

TOST1940

10ST1950
10ST1960

105T1970
10ST1980
105T1990
10ST2000
10ST2010
10572020
10ST2030
10ST2040
10ST2050
105T2060
10572070
10ST2080
I0ST2090
I0ST2100
10ST2110
I0ST2120
10ST2130
10ST2140

10ST2150
10ST2160
105T2170
105T2180
10ST2190
10ST2200
105T2210
105T2220
10ST2230
10ST2240
10572250
10ST2260
10572270
105T2280
10572290
10572300
10572310
10572320
10ST2330
105T23640
10572350
10572360
10ST2370
10ST2380
10572390
10ST2400
10572610
10ST2420
10S5T2430
I0ST2440
10572450
I05T2460
10ST2470

9¢tlL

LOC

000556
000552
000S55E
000562
000566
00056C
000570
000574
000578
00057¢C
000580
000584
000588
0005¢€&C
002590
000594
000594
000538
00059%C
00059¢E
00052
0005a6
0005a8
00052C
000580
000584
0005R8

00058BC
0005Cc0O
0005C2
0005c?2
0005C6
0005CA
0005CE
@005D2
0005p6
000SDA
000SDE
000SEQ
000SE4
000SES
0005EC
0Q0SFO

NEW FXCP LOCATION

OBJECT CODE ADDET

4780
9101
4710
4r87
D20B
4166
4166
5960
4740
$140
4710
4SEOQ
5960
4780
5060

980F
58240
Q7FR
92FF
5860
0660
87F0
5960
4740
4SEO
47F0

5020
0520

92F1
SOOF
5860
5060
5860
9201
5830
05R3
92F 4
58A0
5040
SBOF
O7FA

2102
7030
2102
0028
601F
0008
0020
25BE
2122
2614
213E
22FC
2586
2126
25DE

24EE
255E

600E
2572

2102
2586
2122
22AC
2126

0000

2351
2391
0000
2372
248A
6000
23FA

2351
240E
23C2
2391

00030

8000 0001F

ooas8s

0000E

00913

00000

00913

ADDE2
00570

00570
00028
00000
oooow
00020
00A2C
00530C

005AC
0076
00A2¢
00594
00AU4C

0095¢C
009ccC

009EQ

00570
[ed W1
00590
00717
00594

00000

0095¢C
00000
00964
Q0AUC

0(¢9BC
009D0

00984
0095¢C

STHT

417
418
419
420
421
422
423
424
425
u26
427
428
429
430
431
432
433
434
u3s
u3e6
437
438
439
40
441
u42
443
444

446
a47
n48
849
450
us1
452
453
454
455
456
457
458
459
8360
461
u62

SOUPCE STATEMENT

NONANT

BADDCSB

HITEST1

RERR

XERR1

BE
T
BO
AH
hijed
LA
LA
[of
BL
T
BO
BAL
(o
BNL
ST
EQU
Lx
L
BR
nvI
S
BCTR
B

(o4
BL
BAL
B
DROP

DROP

NONANE
48(7),X*01' IS IT BUSY WITH OPEW
NONAKE YES

8,40 (7)
31(12,6),0(8)
6,11 (61
6,32(6)
6,DANGER
NOWRT2
EECB,Xf40"
HITEST1

B14, ENQD .
6,HIPOINT

NOWRT

6,CURLNG

*

DDNAME EXNTRY

0,15,ERRSAVE
10,0EXCP

10
14(6) , XVFE"
6,SXTN

6,0

NONAME
6,HIPOINT
NOWRT2
R14,00TPUX
NOWRT

2

0
0
2
VE-1,C*' 1
15, ERRSAVE
6,0

6, ERRSAVE+S
6,CURLKG

0(6) ,X"01°*

3, CONAD

10,3
SAVE-1,C*4"
10,0ERR

10 ,ERRSAVE+40
0,15, ERRSAVE
10 OFF TO IBMS EXCPERR
2

2,
2,
*,
SA
o,

SAVE REGISTERS

?

P150CT70

PAGE 6

8/27/71

10ST2480
-I0ST2490
105T2500
I0ST2510
I0ST2520
10ST2530
I0ST2540
TOST2550
I05T2560
10872570
I0ST2580
10S1T2590
I0ST2600
I0ST2610
105T2620
TOST2630
I0ST2640
105T2650
10ST2660
I05T2670
I05T2680
10572690
I05T2700
I0ST2710
10ST2720
I0ST2730
I0ST2740
I0ST2750

I0ST2770
10sT2780
105T2790
I0ST2800
10572810
10572820
I0ST2830
IOST2840
I0sT2850
I0ST2860
10ST2870
I05T2880
10ST2890
I0ST29%00
I0ST2910
I0ST2920
I0ST2930

LEL

roc

0005F2
0005F2
000576
0005FA
0005F=
000602
000606
000601
00060E
000610
000614
0006 18
00061E
000624
000628
00062C
1000632
000636
000532
00063E
000644
000648
00064C
000650
000656
00065¢C
000660
000664
000664
00066E
000672
000676
000674
000680
000684
000688
00068%
000694
000692
0006A0
000614
0006A8
0006RA
0006AE
000684
0006E8
00068C
0006C2
0006C6
0006CA
D006CE
0006D2
000605
000€D4
0006 EO

COMNON FORMAT FOR I/O INTERRUPTS AND ERREXCP

OBJECT CODE ADDR1 ADDE2 STHT SOURCE STATEMENT F150CT70
464 USING CONMON,3

92F3 3321 00913 465 COMMON 'MYI SAVE-1,C'3?

$870 0010 00010 466 L 7,16 cvr

5877 0058 00058 467 L 7,Xt58* (7) PSEUDO CLOCKS

5887 0000 00000 468 L 8,0(7) sHPC

SES7 0004 00004 469 AL 8,4(7) T4PC

5890 0050 00050 470 L 9,80 TIHER

8A90 0001 00001 471 SRA 9,1

1F89 472 SLR 8,9 TINE IN TIMER UNITS (ALMOST)

5080 33AA 0099c 473 ST 8, ERRSAVE+6L

D203 6001 33AA 00001 0099C 474 MVC 1(4,6) ,EFRSAVE+GY

4166 0004 00004 475 LA 6,4 (6)

D20F 6001 1000 0000t 00000 476 MVC 1(16,6),0(1) ROE #%% TEST #e%

4166 0010 00010 477 LA 6,16 (6) *x%x TEST 8¢

4841 0002 00002 478 LH 4,2(1)

D20F 6001 40)0 00001 00000 479 MvC 1(16,6),0(4) UCB IFORKLTION

92FF 6011 00011 480 VI 17(6),X*FF' FLAG FOR NO VOL SER

9120 4010 00010 431 TH 16 (4) ,XTAQ"

4780 3056 00648 482 BZ NOTDATP

D205 6011 401C 00011 0001C 483 nve 17(6,6) ,28(4) VOLUME=SER

4166 0005 00005 484 LA 6,5 (6)

S851 0004 00004 485 NOTLATP L S, 4 (1)

4155 0000 00000 486 LA 5,0(5)

D204 6012 5000 00012 00000 487 Mve 18(5,6),0(5) IOB FLAGS

D200 6017 SO08 00017 00008 488 MvC 23(1,6),8(5)

9520 4012 00012 489 CLI 18(4),X*20°*

8770 307C 0066% 490 BNE NOTDA

D207 6018 5020 00018 00020 491 HVC 24(8,R6),32(R5)

4166 0008 00003 492 LA R6,8 (%6)

5841 000C 0000C 493 NOTLA L 4,12 (1)

8144 0000 00000 494 LA 4,0 (4) TCB

S851 0008 . 00008 495 L 5,8 (1)

D202 6018 5019 00018 00019 496 MVC 24(3,6),25(5)

4166 0003 00003 497 LA 6,3 (6) DC3 PDDRESS ADDITIOH

5855 0018 00018 498 L 5,24 (5) pcs

D201 6018 SO1A 00018 0001n 499 8¥VC 24(2,6),26(5) DSO26

D200 601a 5074 0001A 00024 500 MVC 26 (1,6),36(5) RECFM

D202 601B 50zZA 0001B 0002A 501 mve 27(3,6),42(5) MACRFEIFLGS

£200 601E 5030 0001E 00030 502 MvC 30(1,6) ,48(5) OFLGS

5874 000C 0000c 503 L 7,12(4) TIOT

92FF 601F 0001F 504 MVI 31(6),X'F¥!

1277 505 LTR 7,7

4780 30F2 006E4 506 BZ NOTIOT

D207 601F 7000 0001F 00000 507 MvC 31(8,6),0(7) JOPNAME

4166 0008 00008 508 LA 6,8 (6)

92FF 601F 0001F 509 MVI 31(6),X'FF?

D501 5028 3306 0002& 009C8 510 CLC 40(2,5) ,ZERO

4780 30F2 006EL S11 3E NOTIOT

9110 5030 00030 512 TN 48(5) ,X*10' IS IT OPEN ?

4780 30F2 006E%4 513 BZ NOTIOT HOT OPEN

9101 5030 00030 514 b 48(5),X'01* IS IT BEING OPENED 2

4710 3072 006F4 515 RO NOTIOT YES

4A75 0028 00028 S16 AH 7,40(5)

D20E 601F 7000 0001F 00000 517 MvC 31(12,6),0(7) DD ENTRY

4166 0008 00008 518 LA 6,11(6)

PAGE 7

8/27/71

I0ST2950
I0ST2960
I0ST2970
I0ST2980
I10ST2990
I0ST3000
IOST3010
10sT3020
I0ST3030
IOST3040
I0ST3050
I0ST3060
I10ST3070
IOST3080
IOST3090
I0ST3100
I0ST3110
I0ST3120
I0ST3130
I0ST3140
I0ST3150
30ST3160
I0ST3170
I0ST3180
I0ST3190
I0ST3200
10ST3210
I0ST3220
I0ST3230
I0ST3240
10573250
I0ST3260
I0ST3270
10ST3280
10ST323%0
IOST3300
I0ST3310
10573320
TI0ST3330
I0ST3340
10ST3350
I0ST3360
10573370
I0ST3380
I0ST3390
IOST3400
JOST3410
I0ST3420
I0ST3430
10ST3440
I0ST3450
I0ST3460
I0ST3470
I0ST3480
IOST3490

8EL

Loc

0006 E4
QQ06F8
Q0006EC
0006FQ
0006Fy4
0006FR
0006FA
J0Q6FE
Q00700
000704
000706
00070A
00070C
000710
000714
000716

000713
00071C
00071¢C
000720
000724
000726
000721
00072C
00072%
006730
000734
000738
00073C
000740
000744
000748
00074cC
00074E
000754

000758
00075¢C
000760
000764
000768

00076A
00076¢C
00076C
00076E
000772
000776
00077A
000772
000782

CONNOR FORMAT FrOR I/O INTZPRUPTS

OBJECT CODE ADDR1

4166
5960
4740
9140
4710
1854
45EC
18A5
5960
07BA
5060
07FA
5960
4740
1€EA
47F0

0SFO

S8A0
5820
1926
4740
178
178a
1788
5080
5480
5080
SERO
5080
SBAO
5BAO
1B6A
D703
4G6A

3180
58C0
5840
S8F4
O7FF

05F0

070E
96F0
4180
58C0
5840
S8F4
07FF

cuz20
343
3118
3496
311A

3178
3432
345A

3432
3114

3128

F304
F300

FO14

F330
F338
¥308
F314
F310
F2c8
F2c8

2000
0000

F324
F334
0010
0098

POO1
F2BC
F2E4
0010
0098

00188

A001) 00000

0076D

ADDR2

00020
o0Ar2c
00706

0070C
0076n
00A 24
00A4C

00A24
00706

00712

00A20
oon1C

00730

00rucC
00ASY
00A24
00A30
00A2C
009EY
009E4

00000
00000

00Ar 40
00A50
00010
00098

Q0A28
00A S50
00010
00098

STHT

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
Su42
543
544
545
Su6
547
548
549
550
551
552
553
S54
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

AND EPREXCP

SOURCE STATEMENT P150CT70
NOTIOT LA 6,32(6)
c 6,DANGER
BL B102
™ EECB,X'40"
BO HITEST2
Lo 85,710
BAL R14,ENQP
LR R10,RS
c 6,HIPOINT
BCR 11,810
B102 ST R6,CURLNG
* BR R10
HITEST2 C 6, HIPOINT
BL B102
LR R14,R10
B OUTPUX
DROP 3
* OUTPUT ROUTINE FOR POST OPERATION
OUTPUX BALR 15,0
USING *,R15
L 10,BUFAD2
L 11,BUFAD1
CR 10,6
BL NOSHPX
XR 10, 11
b 41 11,10
XR 10,11 SWAPPED REGISTERS
NOSKPX ST 11,CURLNG
A 11,LENG
ST 11,HIPOINT
s 11,SAFED
ST 11,DANGER
s 10, FOUR
s 10,FOUR
SR 6,10
Xc 0(4,10),0(10) CLEAR LENGTH
STH 6,0(10)
* SET GP FOR POST OPERATION
LA 11, TIMECB
1 12,CURTCB
L 4,16
L 15,152 (4)
BR 15 BRANCH TO THE POST
DROP R15
ENQP BALR R15,0
USING *,15
ENQP BCR 0,14
oI ENQP141,X*FO*
LA 11,DANGECB
L 12,CURTCB
L 5,16
L 15, 152 (4)
BR 15 POST THE DANG ECB
DROP 15

PAGE 8

8/27/71

T0ST3500
I0ST3510
I10ST3520
10573530
IOST3540
TOST 3550
I0ST3560
IOST3570
I0ST3580
I0sT3590
I0ST3600
IOST3610
INST3620
I0ST3630
I0OST3640
I0ST3650
10ST3660
I0ST3670
I0ST3680
I0ST3690
I0ST3700
10sT3710
10ST3720
IOST3730
10ST3740
I0ST3750
IOST3760
I0ST3770
105T3780
I0ST3790
I0OST3800
10sT3810
I0ST3820
I0ST 3830
I0ST3840
I0ST3850
I0ST3860
I0ST3870
10573880
I0ST3890
I0ST3900
10573910
I0ST3920
I10ST3930
I0OST3%40
I0ST3950
I0ST3960
I0ST3970
I0ST3980
I0ST3990
I0OST4000
I0STU010
I0ST4020
I0ST4030

bEL

Lo0C

000784
000784
000788
000782
0007817
00078E
000792

000796
00079
000798
000722
000716
0007ar
0007AE
000782

000788
0007BC
Q007BE
0007coO
0007c4
0007c8
0007¢ccC
0007p0
000702
000706
0007DA
0007DE
0007E0
0007E4
0007E8
0007ER
0007EE
0007F 2
0007F4
0007F6
0007FA
0007Fre
000802
000806
000803
00080¢C
000812
000816

I/0 INTERRUPTS

OBJECT CODE

5020 0008
0520

900F 21p2
5810 0008
S010 21Da

92r2 2189
5830 0010
5843 0000
S844 000U
5854 0000
5860 22cC2
9202 6000
D207 6001 00LO
4166
1877
1887
4380 003a
5480 228E
Sa83 0024
4378 0000
1B88

4380 0038
8880 0004
Su80 228A
1A78

SA73 0024
4387 0000
1877

4370 0038
5470 228h
178

77

SA73 0028
4887 0000
4818 0014
5830 2232
QSA3

92F5 2189
D207 0008
980F 21D2
8200 0008

Q008

22uE

ADDR1

00913

00000
00001

00913
00008

oooos8

ADDR2

00003

Q095¢C
60008
0096u

00010
00000
00004
00000
0o0AuC

00040

00008

0003n
ooA 18
00024
00000

00038
000V 04
QGOATH

00024
00000

00038
00A T4

00028
00000
000 14
009BC

009p8
0095C

STHT

574
575
576
5717
578
579
580
581
582
583
£y
585
586
587
568
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
630
611
612
613
614
615
616
617
618
619
620
621
622

P150CT70

SOURCE STATEMENT
*
* I/0 INTERRUPTS NOW
*
NEW10 EQU *
SAV1 ST 2,8
BALR 2,0
USING *,2
sT®4 0,15,ERRSAVE
SAVEE L 1,8
ST 1,ERRSAVE+8
* NUEW ... HAVE REGISTERS SAVED
KVI SAVE-1,C*2¢
L 3,16 €V POINTER
L 8,0(3)
L 4,4 (4) CURRENT TCB
L 5,0(4) CURRENT RB
L 6,CURLNG
BVI 0(6) ,X'02' RECORD TYPE
¥VC 1(8,6) ,64 CSWECAW
¢+ NOW PIND THE IOB FOR THIS INTERRUPT
LA 6,8(6)
SR 7,7
LR 8,7 2EROS
1c 8,58 FIRST CHANNEL
N 8,MASK1 X100000007"
A 8,36(3) TECILK1
Ic 7,0(8) K
SR 8,8
Ic 8,59
SRL 8,4
N 8,HASK2 X*0000000F"
AR 7,8
A 7,36 (3) TECILK1
ic 8,0(7) L
SR 7,7
Ic 7,59
N 7,8ASK2
AR 7,8
AR 7,7
A 7,40(3) + IECILK2
LH 8,0(7) ucs
LH 1,20(8) RQE
L 3,COMAD
BALR 10,3
VI SAVE-1,C!5¢
SAVII MVC 8(8,00),0PS¥ PS¥ SET-0P
LN 0,15, ERRSAVE
PSW LPSW 8(0) GOOD-BYE
prROP 2

PAGE 9

8/27/71

IOST4L050
10STL060
I0ST4070
I0ST4080
IOST4090
I0ST4100
I0ST4110
T0ST4120
IOSTU130
I0ST4140
IOST4150
I0ST4160
10ST4170
I0ST4180
I0ST4190
I0ST4200
I0ST4210
I0STH4220
TOST4#230
I0ST4240
TOST4250
10ST4260
10ST4270
I0ST4280
IOST4290
I05T4300
10ST4310
10ST4320
TOST4330
I0ST4340
10ST4350
10ST4360
I0ST4370
I0ST4380
10ST4390
IOST44G0
I0ST4410
TI0STU420
I0ST4430
I0STULUO
I0STL450
IOSTUL60
10STLLT0
10ST4480
I0STLU90
10ST4500
I0ST4510
10ST4520
I0ST4530

Oht

DISPATCHER RECORDS FOR CPU UTILIZATION PAGE 10

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT F150CT70 8/27/71
624 * 10ST4550

625 * OLD TASK TIME RECORD I0STUS60

626 * IOST4570

00081A 627 USING *,10 I0ST4580
00081A 900F A142 0095C 628 OLDTH STY 0,15,ERRSAVE SAVE PEGISTERS 105T4590
000B1E 5860 A232 00A4C 629 L R6,CURLNG CURRENT LENGTH OF BUFFER : 10ST4600
000822 9203 6000 00000 630 MVI O(R6),X'03" RKECORD TYPE IOSTU4610
000826 5870 0010 00010 631 L R7,16 T0STU620
00082\ 5887 0000 00000 632 L R8,0(R7) TC3 POINTER I0ST4630
000S2E 4188 0004 00004 633 LA RB,U (RB) OLD TCE ADDPESS I0STU640
000832 4SEO0 AOSC 00876 634 BAL 14, TIMED IOSTU650
635 DROP 10 I0ST4660

000836 636 USING *,14 I0ST4670
000836 980F E126 0095C 637 LM RO,R15, ERRSAVE FESTORE REGS I0STU680
638 DROP 14 I0ST4690

Q00083A S8F0 0010 00010 639 L R15, 16 I0ST4700
00083E 9180 FOEUY 000EY 640 ™™ X¢E4? (R15) ,X"80" I0STU710
000842 478E 001E . 0001E 641 BZ X*1E* (R14) I0ST4720
000846 47FE 0010 00010 642 B 16 (R14) IOSTU730
6u3 * . I0ST4740

644 * NEW TASK TIME RECORD IOST4750

645 * I0STU760

00084A 0540 646 NEWTHM BALR 4,0 10ST4770
0gosuc 647 USING #*,4 105Tu780
00084C 5860 4200 00A4C 648 L R6,CURLNG I0ST4790
000850 9204 6000 00000 649 MVI O(R6),X'04!? RECORD TYPE . I0STL800
000854 90BC 4110 0095C 650 STH 11, 12, ERRSAVE I0ST4810
000858 5870 0010 00010 £51 L R7,16 I0ST4820
00085C 5€87 0000 00000 652 L R8,0(R7)) IOST4830
000860 4SEQ 402A 00876 653 BAL R14,TINZD I0STUBLO
b) 654 DROP 4 IOST4850
000864 655 USING *,R14 . IOSTL860
000864 9¢BC EOFS8 0095¢C 656 LN 11,12 ,ERRSAVE JOSTU870
000868 D207 0180 C010 00180 00010 657 uve X* 180" (8,0),16(12) I0STU880
00086% 9EQF BO30 00030 658 i 0,15,48(11) I0ST4890
000872 8200 0180 00180 659 LPS¥ X*180° IOST4900
660 DROP 14 IOST4910

661 = ’ I0STH920

662 * TIME FIELD PORMATION I0STU930

663 * IOST4LS40

000876 0550 664 TIBED BALR 5,0 I0ST4950
000878 . 665 USING #*,5 I0ST4960
666 * O0UTPUT TINE FPIELD I0STL970

000878 5877 0058 00058 667 L 7,X158¢ (7) TOST4980
00087C S8A7 0000 00000 668 L 10,0(7) JIOST4990
000880 SEA7 0004 00004 669 AL 10,4 (7) JOSTS5000
000884 5890 0050 00050 670 L 9,80 IOST5010
000888 8A90 0001 00001 671 SRA 9,1 I0ST5020
00088C 1FA9 672 SLR 10,9 ALMOST TINME I0STS5030
00088E %0A0 S124 0099C 673 ST 10,ERRSAVE+64 IOSTS5040
000892 D203 6001 S124 00001 0099C 674 BVC . 1(4,6) ,ERRSAVE+64 : I0ST5050
. 000898 D202 6905 8001 00005 00001 675 nvc 5(3,6) , 1(R8B) JOST5060
00089E 5888 0000 00000 676 L 88,0 (R8) TCB POINTER 10ST5070
000822 D200 6008 801C 00008 0001C 677 BvC 8(1,6),28(8) PROTECT KEY I0ST5080

0008A8 5878 0200 00000 678 L R7,0(R8B) . I0ST5090

Lhi

142

0SEGLSO1
OhESLSOI
0EEGISOI
0ZESlsol
0LES LSO
00€EGLS0I
06251S01
08Z51s01
04261501
09ZS1SOI
0G6ZS1s01
0hZSis0I
0£ZGISOI
0ZZsaisol1
0LZS1S01
00261501
06LS1SOI
08161501
oLLsasor
09164501
GSLGlsoI
OhlGlSOI
O0ELSLSOT
02161s01
0LLS1so1
00LSlsOor

te/ee/8

tt 3Io¥d

gelaostd

#Sda 410
SS¥id 4y

S

Sila
vxnaino’sta
Zni8
LN104IH’9
(1%t
951502°9y
LIRS N
INIO&IH’9
LENLY
Sid’niy
¥1dON2’GLy
his’Ly
€1S3LIH
10hs X*8233
[4.1%:!
4390va’ 9y
(sd)0Z’9y
(98) 0’93y
(LYo’ (9’g0) 6L
KYKNON
1ddex’(2) sl
L3’y
(gg)zL’Ly
(Ld) 9L’ (9’80l 1L
(Lot 3°2)s

SNON HYVK

daosd
1<
1
18
o]
1S
1S
8086
o]
- §
g1vd
1
41
o8
L1g
14
3
¥1
Y1
JAR
28
IAK
41T
T
OAR
OAk

€LG3LIH

Znid

" YHRON

INIRILIVLS 32dN3S

noL
EQL
0L
toL
0oL
669
669
L69
969
S69
h69
€69
Z69
169
069
689
889
LR39
989
S89
89
€89
Z89
L 89
089
6L9

RARAY

n3600
hd800
nZvoo

onYo00

"Z VY00

03600
14800

24800
JZV00
171000
£0000
00000
04800

30000
0LCo0
¥0000

Zyaave

4410

orLS 0465

JL0S OnLy

¥1LS 096S

d3Lo

hdLs 0905

33L0

J¥iS 0965

L3glL

d350

gnits 043S

aLrsi

Z80S OtLn

88Y00 0LZS Onhle
JL05 OnLm

nd1lS 096S

h100 991t

L4000 99Ln

€1000 000, €109 L0240
8505 08¢Ln

£L000 €109 Jd4Z6
[ARAY

2000 8L8S

60000 010 49009 LOZa
60000 ¥)OL 6009 tL02Za
iyaaqy 3202 123rao

HOILVZI'IILN NdD HOd SQHOOHY ¥IHOLVESIG

906000
206000
334000
v38000
848000
%38000
248000
338000
238000
438000
9318000
n38000
038000
248000
#d8000
©ds000
08000
228000
928000
728000
348000
288000 .
8a8000
¢68000
2¥B8000

201

LocC

000903
000914
00095C
0002Au
0009a8
000°AC
0009r0
000984
0009r8
0C09eC
0009cC0
0009cu
oooecs
0009ccC
000900
00098
0009E0
0009Tu
0009F8
0009F2
0009F€E
000A0U4
000A08
000Aa0A
000A10
000a1Y4
000A18
000A1C
€00A20
000A24
000A 23
000a2cC
000A30
000A 34
00nAa3C
000a40
000ALY
000A48
000AUC
000AS0
000AS5Y

000a88
0Qor88
000A8BC
0o0oasc
0002r8D
000A90
000A9Y4
000A9C
000AAD
Q00AAY
Q0048
Q00AAN
000AAC

DATA APEA

OBJECT CODF ADD®1 ADDER2

40 E2CIESC540CI1DY
0000000000000000
0000000000000000

000003Ca
2000043E
0000046C
000005RC
00000784
000005F2
00000767
000007 1A
00000000

00000010
0000000u

S@A0EOOANSRA
00000814A
SEAOEQUE07FA
00000842

0000000F
00000007

00000040
00000A288Q000A88

00000000

00000A3C
80000A40

00003EFY

40000000
02
00000A88

00000ABS8
00000ASH

0001
0000000000000000

-
=
3

708
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734

SOURCF STATE

SAVF
FPRSAVFE

INTITY
PEDOS
FXCPRD
ERPAD
INTPTAD
coxan
FNQPTH
QUTPUXA
2EFO
OEXCP
OERR
oPSH
SXTH
Foure
DISP Y
DISPT2
MONTIME1

MONTIME2

MASK2
MASK
BUFA D
BUFADZ

DANGICE

737
738
739
740
741
742
743
44
745
46
w7
782
783
784
785
786
787
788
789
790
791
792
793
794

DANGER
SAFED
DESE
OPFCP
TINECH
ECBS

CURLIIG
CURTCE
LEXNG
TAPES

EECB
IOADR

ECBA
CSWP

DC
pC
DC
DS
nC
DC
bC
DC
DpCc
DC
DC
DC
nc
oS
DS
DS
DC
CC
33
DS

MENT F150CT70
CL12' SAVE AREA!
18710
18F1 0"

F
A(INITIZ)
A (REDOTT)
A (NEXCP)
A (NERR)
A(NEWIO)
A (COMMON)
A (ENQP)

A (OUTPUX)
PIO*

cLi2
XL6'SS8AOEOOAOSBAY
A (OLDTH)

H
XL61S8AQEQU607FA "
A (NEHTYH)
X*0000000F"*
X*00000007°*

12

F

F

F

P

P'160°

A (DANGECB) ,XL1980',AL3 (EECB)
F'O?

FiQ

A (OPECB)

Xt80',AL3 (TIMECB)

P

P

P*16116°

MACRF=(E) ,DDNANE=OUTTAPE,DEVD=TA
oP

XL4'40000000"

oF

X102 SUPPRESS LENGTH INDICATION
XL3

A (BECB) ECB ADDRESS

2F

A {CCWus) CCW ADDRESS
A (TAPES) DCB ADDRESS
4

geie
B
2F10!

PAGE 12

8/21/71

T0STS370
I0ST5380
I0STS539%0
TOSTS5400
I0STS410
INSTSu20
10STS5430
I0STS5440
TOSTS5450
I0STSU60
TOSTS5470
IOSTS5480
I0STS5490
T0ST5500
10ST5510
10ST5520
10STS5530
I0STS5540
I0STS5550
I0STS5560
10ST5570
I0STS5580
I0ST5590
IOST5600
I0ST5610
I0STS620
10sT5630
IQOSTS640
10ST5650
TOST5660
105175670
10ST5680
I0STS690
I0STS700
I0ST5710
10STS5720
I0ST5730
I0ST5740
IOSTS5750
10575760
I0ST5770
10ST5780
I10ST5790
105TS800
I0ST5810
I1I0sT5820
I0sTS5830
I0ST5840
10s515850
I0OST5860
10ST5870
I0ST5880
10575890
I0ST5900

I0ST5910

gEnl

Loc

000aBUY
000AB8
000aCO
. 000AC8

000ADO
000AD9
000AEO
000AES

DATA AVEA

OBJECT CODE

00000000
0100000020000000
1F00000020000000
E2EBE2CHE2DSU040
E2EBE2F148D3C9DS
E2EBE2C3E3D3C7

C7ID6E3CIE3

ADDRY ADDF2

STHET

7885
796
797
798
799
800
e01
802

SOUPTE

cCWs
TPEK
QHY
BHE
ENM2
FEFL
OKRE?

STATEAENT

ccs 01,0,32,0
ccd 31,0,32,0

nc CLA*SYSDSEN!
nc C*SYST.LINK®
nC CfSYSCTLG®
DS cLs

DC CL5*GATI™"
END

PAGF 13

F150CT70 8/27/71

INSTS5320
INnsST5930
TI0STS940
10575350
TOST5960
IOST5970
I0ST5980
I0STS950

hil

145

APPENDIX D

BOSS LANGUAGE STATEMENTS

—— ———— -

label:SYSTEM terminations [,snap_intervall;

Because the SYSTEM statement is the primary entry point of
a procgram, it may orly appear as the first statement of each
simulation program. Additionrally, the SYSTEMN statement may
nonly appear once in a given simulation program and must also be
labeled to provide a label for the program. Execution parame-
ters which control the number of terminations and the
"spnapshot" interval are passed to the program by this state-
ment. The proper form of the statement is shown above where
"terminations"™ is an integer specifying the number of TERMINATE
counts to be used as a maximum. The optional "snap_interval"
parameter will cause a "snapshot" of the current termination
dump at intervals equal to the integer value of this parameter.

Assignment Statements

variable = expression;

Assignment statements in the BOSS language are similar to
assigment statements in many other lancuages. Precedence rela-
tions are used which cause multiplication and division evalua-
+ions to be perfcrmed before addition and subtraction. Left t
right eveluation is performed with these precedence relations.
To force the evaluatiorn of subgroups, parenthesized expressions
are allowad within assignment statements. Only single assign-
ments mav be made for BOSS variables.

-
A4

Three distinct assignment statement variable types are im-
plemerted. These *three{integer, floating point, and Boolean)
are used to set values intc variables for later use. Since
variable type may be dependent upon context, a particular order
of test is necessary.

The preferred variable type for system simulation was
chosen to be integer. The first attempt to class an assignment
statement tries to find an integer expression for the right-
hand part. If ar integer expression (one constructed totally
of integers and integer variables) is found, simple assignment
occurs and the program continues. If, however, the expression
contains noninteger parts, then the entire expression is evalu-
ated in floating-point arithmetic and then converted to integer

146

form by truncation.

Floating point variables are useful only for certain vari-
ables such as time periods. These variables must be declared,
and caution must be taken in their use. If an expression is
evaluated for assignment to a floating point variable, conver-
sions may be necessary. If the entire expression is integer
then the conversion is done after the expression is evaluated.
If the expressicn ccntains other floating point items, then the
entire expression is evaluated in floating point.

Boolean variables are the third form for the assignment
statement. Boolean variables are only useful as arguments of
IF statements. However, used properly for an expression which
is repeated many times, Boolean variables may save both tinme
and space. To achieve this goal, Boolean variables must be de-
clared. The precedence relations provide that arithmetic con-
parison will be performed first, followed by negation, and then
the Boolean intersection and union functions. Evaluation is
also left to right with parentheses to group sub-expressions.

A number of built-in functions are alse available to the
BOSS system. Meost of these functions return floating point ar-
guments. These functions include ABS (absolute value), RANDOM
(&8 random number generator), LN (the natural logarithm furnc-
tion), SQRT (square root function), NORMAL (returns an observa-
tion from a normal distribution), MARK (returns the current
time), and MOD (the remainder function). These functions may
be used in an expression anywhere that a variable may bhe used.

mu - WAMIY ~md o A« own
L1 NV Lo SDua e me

i

it is a nonexecutabl tement which is
used to insert comments into the simulation. The nput string
following this keyword is ignored until the first semi-colon is
detected,; when normal translation continues.

-

<
i
EXD

Ths ERD sStatcme
form housekeeping fun
tion of execution. T
simulation program or subroutina.

EXIT

r3)
o<
)
-3

147

The EYIT statement effects a return Zrom the current pro-
gram or subroutine. The appropriate housekeeping is performed,
and execution returns to the calling program.

6O TQ

GO TO label;

The GO TO (or GOTO) statement is an unconditional branch
to the label identifier folliowing the keywords GO TO. Sub-
scripted or variable label identifiers are not allowed.

SAVE

SAVE;

The SAVE function stores all of the current information
necessary to restart the simulation at a later time. If the
SAVE instruction is executed more than once, only the most
recent data is retained.

RESTORE;

The complementary function for the SAVE instruction,
RESTORE restarts the system at the point of the last SAVE. If
no data set exists for the RESTORE operation, no action
results. Typically, the RESTORE would be used irmediately Zfol-
lowing the SYSTEM statement.

 XECUTE

+

'[Tl

EXECUTE process_name{ (parnl,parm2,...,parml) J;

The EXECUTE statement is the subrcutine call operatiorn.
The processing is transferred to the subroutine specified in
this statement. Parameters are passed through a parameter list

in the statement. The proper form of the EXECUTE statement is
shown above,.

PROCESS process_name((parm1,parm2,...,parmnN) J;

In order to define a common subroutine for a process, the
PROCESS statement is used as a header. The PROCESS statement
directs the compiler to form a2 new secticn of code with unrique
names and locations. The only communication between the main

148

program and these subprocesses must be achieved through the pa-
rameter lists. Fach process must have an END statement as its
last statement. All subprocesses must follow the main program
in the input deck. The PROCESS statement is formed exactly
like the EXECUTE statement.

DECLARE

To reserve space for variables, a DECLARE (or DCL) state-
ment is used. This statement is the only way to reserve or
declare the dimensions and type of subscripted variables. A

discussion of variable types may be found elsewhere in this de-
scription.

WAIT{ UNTIL (expression) J{ON(event_variables) };

The function of accumulating time is primarily performead
by the WAIT statement. The WAIT statement causes the current
transactiorn to suspend execution and allows another transaction
to become the current transaction. Two types of events and the
combinations of these events are used to signal completion of
the wait interval. These types are dependent upon either the
conpletion of a specified time interval, or the completion of
some simulation activity as defined by that activity itself.
The second type of event performs the action of communicating
between different transactions in the simulated system. The
action of waiting for a certain time period is achieved by
using the UNTIL form of the statement. The desired time period
is specified by the expression contained within the parenthe-
ses. An example of the time period WAIT operation is:

YAIT UNTIL(5):

which will cause the transaction tc remain at this peint for a
period of five clock cycles.
The event completion form of the WAIT statement allows a
delay until any specified number of events have completed.
WAIT OF (1,AEVE,BEVE,CEVE);
which specifies that the WAIT will continue until one of the
three events completes.

If both methods are combined, the WAIT continues only
until one of the operations conmpletes.

SIGNAL

———— —— —— g

149

SIGNAL event_nanme;

The SIGNAL statement is half of the communication effort
between various transactions. This allows a transaction to
tell another transaction to resume its execution. The event
name to be used for the SIGNAL statement is used to signal the
avent for the completion of the WAIT period.

CLEAR event_nane;

The CLEAR statement is used to reset the event variable
which is tested by the WAIT statements.

ALLOCATE

ALLOCATE store_name,size[,[sub_ident],[conditionalll;

To indicate the storage of a discrete item, the ALLOCATE
instruction reserves a certain number of storage units. The
storage area must have a declaration statement to indicate its
maximum size. This storage area is designated by the identifi-
er following the ALLOCATE keyword. A storage hierarchy may be
set up by a subscripted storage variable reference. The second
parameter of the ALLOCATE operation must be an integer expres-
sion which specifies the amount of storage to be reserved by
this instruction.

Two optional parameters may also be specified. The first
is an identifier or integer which serves as an identifier for
the allocated storage. This allows a further subdivision of
the memory into areas. The second operation aliows a :
cenditional alleocation. If the storage area does not have a
large encugh free block, then the label identifier of this pa-
ramneter receives control. If no alternate processing is speci-
fied, the ALLOCATE function suspends processing of the transac-
tior until the space is available. Suspended processes are
kept in lis* ordered by their priority to determine the next
request to be attempted when some additional space is avail-
able.

FREE

FREE store_name,size{,[sub_ident},[conditional]];

The FREE instruction removes storage units from the re-
served status and returns them to an unallocated status. The
identifiers for the process are the same as those used by ALLO-
CATE. 1If the FREFE instruction fails, the alternate label ad-

150

dress is entered. The particular area freed is determined by
the size and sub-identifier. The oldest area is freed first.

ENQUEUE
ENQUEUE queue_name[,queue_post_list];

The ENQUEUE operation is used to create a list or queue of
transactions ordered by their priority. The queue name defines
a gueue *to which the transaction is added. Execution of the
transaction continues with the next sequen*ial instruction, but
an exact copy of the tramsaction is created to be added into
the queue. The event variables specified in the queue post
list are signaled to indicate the occurrence cof the event.

i ot a0 ot v

DEQUEUE queue_name;

The copy of a transacticn in the specified queue or list
is copied into the current transaction and execution continues
sequentially. DEQUEUE then destroys the copy in the 1list and
removes its entry. If a list is empty, a wait occurs until
scmething is added irnto the queue,

GET/PUT
{GET | PUT}[FILE(file_name) liotype;

The input/output instructions GET and PUT are used for
generalized I/0 forms. These instructions allow the simulation
to output or input data Zor use 1y the simulation. The f£ile
name may either be specified by the FILE subparameter, or may
have a default rame. The default input file name is SYSIN,

Its attributes define it to be a card image stream file with a
record length of eighty characters., This data set may alsc
blocked if desired.

The default cutput file name is SYSPRINT. This data sect
may not be changed by the user, because it is the error message
output file, Nc simulation program should be attempted without
this data set. If the data set 1s not availlable to the pro-
gram, an abrnormal end condition is created.

I/0 files to be used by the simulation may be only sequen-
tial organizations. The record format may be any format sup-
ported by the operating systenm.

LIST (variable_list)

The I/0 type may be either LIST-oriented or EDIT-oriented.
The 1LIST form shown above is the form which allows frees format
irput and output defined by the compiler. The only information

LASS

151

required is the list of identifiers to be processed. Proper

type conversions are performed internally for the processed

data.
EDIT (variable_list) (format_list)

The EDIT I/0 type is designed to allow specification of
the format for the I/0 operation. The variable list is used teo
point to the variables needed for I/0O, but conversion is now
performed according to the directions in the format list. The
format list is a collection of format codes which may have du-
plication factors associated with them. The format codes which
are implemented are:

SKIP[(number) } ... Skip the number of lines designated.

If no number is specified, skip one line.

COLUMN (number) ... Move to column specified by the num-
ber. If the number is smaller than the current
column, move to the indicated column on the next
line or record.

\GE ... Begin a new page.

{number}] ... Process a character string. If the nunm-
ber is specified, output that number of characters.
Otherwise, process the current length of the string.

X (number) ... Insert the specified number of blanks in
the record.

F(number) ... Process an integer number. The length of
the number (the number of decimal digits) is speci-
fied. 1leading zeros are suppressed.

E(number,number) ... Process a floating poirt number.

The total number of characters is given by the first
number and the number of digits following the deci-
mal point is given by the second operand.

MAP ... Output a representative map of the storage speci-
fied by the lustruction, showing the areas presently
reserved and their identifiers.

SPACE ... Output the numbers representing the total
available space and the largest free space in the
specified storage.

DISPLAY (queue variable) ... Output the number of transac-
tions wailting in the specified queue.

DISPLAY (event variable) ... Output the word “WAIT" if a
vait is in effect for *his variable, output the word
#COMPY 1f the event is complete, and output the word

"CLEAR" if the event has been cleared.
The last fcur of these format codes may only occur in the
PUT statement and never in the GET statement.

IF

IF boclean_expr THEN statements ELSE statements

-
’

152

The IF statement is a decision making statement which
allows logical testing and conditional statement execution de-
pendent upon the test results. The test condition is a Boolean
expression using several Boolean connectives., These Boolean
conrectives are:
greater than or equal to
less than or equal to
equal to
less than
greater than
not equal *o
and
or
not
The first six of these (>=,<=,=,<{,>,2=) are used as connectives
between numeric expressions. The last three (§,|,-) are used
as Boclean connectives between Boolean variables or expres-
sions.

1}

=@l VA ANV

If the Booclean oxpression is true, then the statement cor
statement group fcilowing the THEN instruction is executed. If
the expression is faise, the ELSE clause is executed. If the
FLSF clause is omitted, then no special action is taken if the
statement is false. In order to group more than one statement
together, the statenen*s must be preceded by the word DO fol-
lowed by a semi-colcn, and followed by the word END followed
again by a semi-colon. The allowed statements are selected
from the group of executable statements excluding the GENERATE
Statenment.

SEIZE facility_name;

The SEIZE action exclusively reservas a parvticular facili-
ty for the transaction issuing the SEIZE. VNo other transaction
is allowed to SEIZE a facility until the current transacticn is
finished with the facilitv. A transaction which is preventeil
from SEIZEing a facility is linked to a chain of transactions
waiting for this facility. When the facility is free, the
highest priority 2ud eldest transaction at that priority is al-
lowed to SEIZE the facility.

RELEASE

RELEASE facility_name;

After a facility has been SEIZEd, it may be freed by the
RELEASE command. This command allows a waiting transaction to
SEIZE the facility.

153

PRIORITY

PRIORITY integer_expression;

The PRIORITY operation allows a change in the priority of
the entering transaction. The integer value of the expression
is used as the priority of the transaction until it is TERMI-
NATEd or explicitly changed again.

TERMINATE

TERMINATE[integer_expression];

The TERMINATE operation eliminates or destroys the enter-
ing transaction. The overall TERMINATE count is decremented by
the value of the expression. If no expression is specified, no
decrement occurs.

GENERATE
GENERATE [,MAX (int) J[,MEAN (int) [START (int) JIDEVI(in%))
[,parmlist];

The GENERATE statement creates transactions according to
the parameters specified in the statement. Each option uses an
integer number to determine its value. The option MAX
specifies the maximum number of transactions which will be cre-
ated by this GENERATE statement. The three options MEAN,
START, and DEVI define the mean time between creations, the
first transaction creation time and the standard deviation
arourd the mean for creation times. The parameter list option
allows the initialization of transaction parameters as They are
created. Either floating poin*t or integer variables are al-
lowed in the parameter list.

TABULATIE
TABULATE table_id;

The TABULATE statement is used to output statistics com-
pilsd for a specified set of variable names. The output is
produced by the system in a standard form. The variables *o be
tabulated are specified by the table identified in the state-
ment. All statistics are output as recorded to the time of the
TABULATE statement,

154

APPENDIX E

FORMAL LANGUAGE DEFINITION OF BOSS

The following META PI definitions were produced from the

data set which is used as input for the compiler-compiler.

These definitions totally define the syntax and the semantics

of the BOS

boss :=

l1blstmt2

labx =

lblstmt ¢

estmt HE

S compiler.

1blstmt2 ';' .ERR('04 EXPECTED SEMI-COLON') $(
lblstnt2 .ERR{'08 UNDECODABLE STATEMENT!) ¢;!
.ERP {04 EYPECTED SEMI-COLON'})

:= 1blstmt | .IGN(-) (.LATCH(labx) { .EMPTY) Y'END'
.OUT ("S8F.% *1 , A2 , '051F') .EXREF('ZBOUT')

.LABEL (*¥1) .OUT ('58F10000* , 'OSEF') .OUT('58DDO00U"
, '98ECDOOC' , '1BFF' , '07FE') .DECK ;

L

«ID .SAV(*) (':' .NOP(C) .RES .TYPE('AOLABEL')
.ERR('08 PREVIOUSLY DEFINED ... NOT A LABELY)

+LABEL(* S) { .IGN(R) ':') ;

= LLATCH(labx) lblstmt .NOP(I) | .NOP(C) systmt | (
estmt | iostmt | tabu | exec | ifst | decl | genr |
alio | prcss | gcom § Trcecst | waitstm § o LATCH (assgnj
| .IGN(-) .LATCH(bassgn)) :
"NOTE® .TO('3t) | 'EXIT®
.OUT{(*58DDOOOUY, *A8ECDOOC!, *1BFF! ,*QT7FEY) | 'YTERMI-
NATE* (.INT .OUT ('581'.IGEN)| .EMPTY .OUT('1B11'))
LOUT('58F.@dtermit , 'O7FF') | ('GOTO' | 'GO' 'TO')
+.ID .TYPE(*AOLABEL') .ERR(*0O8 DBRANCH TO A NCN-LABEL
VARIABLE') .QUT('S8E.' * , 'Q7FE') | 'RELEASE*' .ID
+TYPE{*88FACIL") LERR{ 04 XELEASE OF A NON-FACILITY
VARIABLE') .0UT('S581.,' * , *'94F71000' , '58F.@drelse!
, 'OSEF') | 'SEIZE! .ID .TYPE('88FACIL') .ERR('O0U
NON-FACILITY VARIABLE MAY NOT BE SEIZED') .OUT('581.?
* , '58F,' *1 , '91081000* , *Q78F' , '58F.dseiz!
'0SEF') .LABEL(*1) .OUT('581.2me' , '58110014" ,
'D2031000E000* , '96081000*') | 'SAVE'.CUT('0510°' ,
'45110008*) .EXREF('ZBSVE') .OUT{*58F10000* , 'O5SEF')
{ 'RESTORE" .OUT(*0510' , '45110008")

155

.EXREF ('ZBRSTR') .OUT('58F10000' , '0SEF') | !PRIORI-
TY' iexpr .OUT (*58E.@ne' , '42' OF 'E0000') .IGN(-) |
'SIGNAL' $(.ID .TYPE('S84EVENT') .ERR('08 ONLY EVENT
VARIABLES MAY BE SIGNALED') .OUT('S8E.' *1 , A2 ,
1051E') .EXREF ('ZBSIG') .LABEL(%1) .OUT('S58F10000"
1581.' % , 'OS5EF')(*,' | .EMPTY)) | 'CLEAR' .ID
.TYPE (*84EVENT') .ERR('08 NOT AN EVENT VARIABLE!')
LOUT ("58E.% * , '94TFE000%) ;

L4

assgn := JLATCH(prmasgn) { .ID .SAV(* S) .RES indx ‘=
(.LATCH (expri) (.RES) (.TYPE('8S8UINTE') .OUT('50' OF P
*0000') .IGN(-) | .TYPE('S84FLOAT') .OUT('18E' OF ,
10FE' , 'S54E.X8000') .,SAV(W8 S) .OUT('90EF R ,
964E R , '2B' 42 0 , '6A' O R8 , '70' O OF
10000*) ,IGN(-) | LIGN(-) '"¢#') .IGN{-) { expr (.RES)
" (+TYPE('84FLOAT') .0UT('70' O OF '0000*).IGN(- -2) |
.TYPE('8U4INTE') .ERR('16 TIMPROPER TYPE VARIABLE')
.SAV(0 S S) .oUT('38' #2 R , '2B* R R , *3A' -2,
'*6F' 0 ',X4ECOY , *S8F* W8 , '60' O 'FOOOC ,
'S8FFO004*) .IGN(R8) .0UT('0510' , *47B10006°* ,
"13FF' , 'S0F' OF '0000') .IGN(-) | .IGN(- R -) ';°
))

iexpr t= LJLATCH(expri) | iexprx ;

iexprx expr .SAV(0O S S) .00UT('38* + R, '2B' R R , '3A' -2
, Y6EY 0 ', XU4EOO* , 'S58F* W8 , '60' O 'F0000' , *58r!
+ '0004r , *0510* , '47B10006' , '13' QOF OF) .IGN(R8

-2) 3

systmt := 'SYSTEM' .ONCE .ERR('O4 ONLY ONE SYSTEM STMT AL-
LOWED') .SAV (f@snap’) .NOP{’B4INTE?) .TSET
.SAV('dterms') .TSET .IGN(0) .INT .OGT('S8E'.IGEN ,
'50E.3terns') (',' .INT .OUT('58F' ,IGEN ,
*SQ0E.dsnap®) | .EWPTY .OUT(*1BEE' , 'SOE.@snap‘))

Try a+fF .
L1 ST

inistf := .OUT('S58E.dextr' , '58EE0000' , *41F.dme' ,
'SO0FEQQOCY , 'S8F.@ddisp+tt , ‘SOFE0008' , 'S81.dgentt!
, 'S8F.2init' , 'S58FFC000' , ‘*OSEF' , *58F.2dispt!
SQTFF' , R4) .LABEL (@init?) .EXREF {*ZBINITY)
.LABEL ('@end') .EXREF('ZBEND') .LABEL (*@atab!')
.EXREF ("ZBATAB') .LABEL('dextr?) .EXREF('ZBEXTRC')
terminte seize release

14

* Other rcutines which may be resident are placed here
.LAPEL (*@dispt') .OUT('58E.dextr! , 'S8EQR000' ,
5810E0C0 , '41101000* , *S582.' *1 , *"1211+ , 0772
, '58F.dend' , *'S8FOF00O0* , 'OSEF' , '58D0DOOC!

’

156

"98ECDOOC' , '1BFF' , '07FE') .LABEL (%1)

.0UT (*501.@me' , '58F10010' , 'S50F.dnow' , 'SB8F01000"
, 'SOFOE000* , 'S8F0100C' , 'D503E0041010' , '072F' ,
'18EF' , 'S8F.@atab!' , '58F0F000' , '07FF') ;

bassgn := .ID .TYPE('81BOOL') .ERR('08 TIMPROPER BOOLEAN')
indx'='.NOP (C) boole .OUT('D200' P *000' OF *'000")
LIGN (- =)

blvar = Ya' blvar .0UT(*13' OF OF , '06' OF '0') | ('TRUE'
{ *1') .OUT('1B* + OF , '06' OF *QO') | ('FALSE' |
*0') .OUT(*1B* + OF) | .ID .TYPE('81BOOL'} indx
.OUT(*18E' OF , *1B' OF OF , '43% OF 'E0000') ;

bprim := JLATCH(blvar) | *(' boole ')' ¢ .LATCH (icompr) |
expr bltst expr .OUT('1BEE' , '39' -2 , '1&' + 'g§¢
'58E.' *1 , '07* R 'E' , '13' OF OF , '06' OF '0Y)
<LABEL(*1) .IGN(-2)

’

.
’

icompr := expri bltst expri .OUT('1BEE' , *'19' - , '18* OF
'EY , 'S8E.' %1 , *Q7* R ‘'E' , '13' OF QOF , 067 OF
'0') LLABEL(*1)

bltst := 1>=¢ [SAV('B') | '<=' ,SAV('D') | '=' .SAV('8') |
TS OUSAV(TUT) | DY _SAV('2') | 'a=' _SAV('7Y) ;

bterme := bprim $('¢*' bprim .OUT(*14' -) | *{* bprim
L0UT(*16' =)) ;

bterm := bterme .ERR('08 IMPROPER BOOLEAN EXPRESSION');

bcole := (=% bierm .OUT (*i3% OF OF , *06% OF *0°%) | pterm)
.OUT('S8E." w1 , *42* OF *EQ000' , *18' QF 'E')
JIGN(RT)

ifst =

'IF' boole .QUT {'S8E.' %1 , '95FF' QF 1000' , 'Q77E")
.IGN(-) !THEN' boss2 .OUT('S58E.' %2 , 'Q7FE!)
.LABEL{*1) (.LATCH(eclse) | .EMPTY) .LABEL (*2) ;

*

eclse := 'Y;' 'ELSE' .NOP(C) bhoss2 ;

boss2 := 'DO' ';' $(lblstmt *;') .IGN(-) ‘'END' .ERR('08
UNDECODABLE STATEHMENT') { lblstmt .ERR('08
UNDECODABLE STATEMENT!)

varb := LJLATCH(prmflt) { .ID .SAV(* S) .RES indx ,RES typcon

typcen := TYPE('S84FLOAT') .0UT('78°' +2 OF '0000') .IGN(-) |

157

.TYPE('B4INTE') .OUT('S8E' OF '0000*') .IGN(-) conflt

prim := LLATCH(elemf) { 'ABS(' expr ')' .0UT('30' 0 0) { * ('
expr ')' { .NUM ,0UT('78' +2 .NGEN) | .INT
.OUT('S8E'.IGEN) conflt | varb ;

conflt := .OUT('10FE' , 'S4E.X80007) .SAV(W8 S) .OUT('58' +
W8 , '90EF' QOF '000F , '964E' OF '000' , *2B' +2 0
'6A' 0 OF '0000') .IGN(R8 =) .EMPTY ;

’

elenf := ('RANDONM(' .INT .OUT('580'.IGEN) .SAV('ZBRNDM')
.SAV(*2) .SAV(*1) elcom1 { 'NORMAL(' expr .OUT('58F."
%2 , 170 0 'FOOO4') .IGN(-2) (',' expr .OUT('70' O
'FO008') | .EMPTY .OUT('41100001" , 'S01F0008'))
.SAV (' ZBNRUL') .SAV (¥2) .SAV(*1) elcon1
.OUT (*00000000') | ('SQRT(' .SAV('ZBSQRT') | 'LN("
.SAV('ZBLNX')) expr .OUT('58F.' %2 , 170" 0 *FO004")
JSAV{%2) .SAV{*1} elcom?) .LABEL{*1) .CUT{'58F10000"
, 'OSEF! , 'S8E.' %2 , 178' +2 'E0004');

elcom? := .OUT('S8E.* R , A2, '051F') .LABEL(R) .EXREF(R)
' .0UT (*00000000*') ') "' ;

secn := prim $('*' prim .0UT(*3C' -2) | '/' prim .OUT ('3D'
=2));

term = '=-' gecn .O0T('33* 0 Q) | '+' secn | secn ;

expr = term $(*+' term .OUT(*3A'-2) | '-' term
.OUT('3B'-2)):

axpri := termi $('+' termi .OUT(*TAf-) | *'-' ternmi
LOUT("1B'-));

termi = '=' secni LOUT{'13* QOF QOF) ! '+t cecni { secni;

secni = primi $((**' primi .SAV('C') | '/' primi .SAV('D"))
.OUT(*18E* O0F) .IGN(-) .OUT(*180% OF , *8E000020°* ,
*1t R 10E' , '18' OF '1')) ;

primi := LJLATCH(elemi) .OUT('S8E.' *1 , A2 , '051EY)

.EXREF(R) .LABEL(*1) .OUT('58F10000* , 'O5EF' , *18!'
OF *1') | *MARK' .OUT('S8' + '_NOW' , *'58' OF OF
'0000') | 'MOD(' expri ',' expri ')*' .OUT('18E* OF)
.IGN(-) .OoUT(*180* OF , *8E000020' , *1DOE* , *18' OF
0') { 'ABS (" expri ') .OUT('10' OF OF) | *(' expri

'

y* t ivar

158

elemi := *RANDOM(' .INT .OUT('580*' .IGEN) .SAV('ZBRANDI') ')

wvaitstm

"WAIT' ('UNTIL(' expr ')' .OUT(*58E.* *1 , '30' 0
0, '078E* , 'S8E,! %2 , t70' 0 'EQ004') | .EMPTY)
.0UT('581.*' %2) (oncla .OUT('S0E10008') | .EMPTY)
LOUT(*47F1000C*' , A4) ,LABEL(*2) .EXREF('ZBWT')
.OUT (*00000000" , *00000000* , '58F10000' , "0SEFf)
LLABEL(*1) ;

oncla = 'ON(' ivarx ',' .OUT('S81.' *1 , a2 , 'OSEM
*00000000') evnts .LABEL(*1) .O0UT('SB1.10004°* ,
96801000 , *S50* OF *EQQ00*) *')' .IGN(-)

ivarx = ivar .ERR('12 ONLY SIMPLE INTEGER VARIABLES AL~
LOWED') ;

ivar := .NUM '¢' | JINT .OUT('58' + .IGEN) | .LATCH(prmint) |
+.ID JTYPE{*SUINTE') indx .OUT('58' OF OF '0000'} ;

evnts := ..ID .TYPE('S4EVENT®) .ERR('08 ONLY EVENT VARI-

ABLES') .OUT('000,' #¥) $(',* .ID .TYPE('S84EVENT')
.ERR('08 ONLY EVENT VARIABLES') .OUT('000.' *)) ;

allo := ("ALLOCATE' .SAV('ZBALLO') | 'FREE' .SAV('ZBFREE'))
.ID .TYPE('O4STOR') .ERR('12 NOT A STORAGE') indx
.OUT('581,' %1 , 50" OF '10004') .IGN(-) *,' iexpr
LOUT('50' OF '10008%') .IGN(-) (',' (.ID .OUT('S8E."
%) | .INT ,OUT('S8E'.IGEN) | .EMPTY .OUT('58E.ame' ,
'58EE0000')) (*,' .ID .TYPE('AOLABEL') .ERR('08 LABEL
VARIABLE EXPECTED') .SAV{!'S80.' %)
| EMPTY.SAV(*iBOO')) | EMPTY .OUT(‘58E.@me?,
*58EE0000') .SAV(*1300')) .OUT('50E1000C* , '47F10010"
,Al) .LABEL{(*1) .EXREF(X R) .OUT('00000000¢ ,
100000000 , *00000000f , "58F10000°¢ , R , '05EF);

’ 4

*rcst := 'TRACE' .SAV('ZBTR') trc*ps .OUT ('S58F.' *2) .SAV(*2)
.SAV(*1) parms ')' .LABEL(*1) .0UT(*58F10000' ,
‘OS5EFY) ;

trctps 1= YJOB(' .SAV(R "J') § SSTEP{" .SAV(R 5%) j *IoP{®
LSAV(R 'I') | 'EXIT(' .SAV(R 'E') ;

iostmt := ('PUT* .SAV('O') .SAV('SYSPRINT') | 'GET' .SAV('I')
«SAV('SYSIN')) iocall ;

iocall := .OUT('S8E.' *1 , 'O7FE') .LABEL(*2) ('FILE(' .ID
LOUT(T 'Rt &% 170y vy | FPMPTY .RES .QUT('#' #x
*:1)) .LABEL(*1) .SAV(*2) iotype;

159

iotype := LIST(' .SAV{X "ZBOUTL®' R) .OUT('58F.' *2 , X
'581.¢ R , '501F0004' , '41FFO004') .SAV(*2).SAV(*1)
parms %) ' .OUT('00000000') .LABEL(*1) .OUT (*58F10000"
, '05EF') | YEDIT(' .SAV(X 'ZBOUTE' R) .OUT('58F.%' %2
, X '581.* B , *S501F0004* , '41FFO004') .SAV(*2)
.SAV(*1) parms ')* .OUT (*00000000') .LABEL (*1)

.OUT (*58F10000* , '05EF') edtfmt ;

edtfmt := L.OUT('58E.' *1 , '07FE')} .LABEL(*2) *'(' formats ')'
LOUT('47F.' *2) .LABEL(*1) ;3

forrats := frmti (',' formats { .ENPTY) ;

froti := LINT .OUT('58' + .IGEN) .LABEL(*1) ('(' formats ')

| frmcde) .OUT(vY46' OF *'.' *1) ,IGN(-) | frumcde ;

frmcde = ('SKIP' (' (' intprt ')' | JEMPTY .OUT('41' +
100001 , *SO*' OF '10000') .IGN(-)) .OUT('1B11%) |
{*COLUMN{*{ 'COL{') dintprt *)' .OUT('41100004") |
'PAGE' .0UT('41100008*')y | *A' ('(' intprt ")' |
.EMPTY .OUT (*1B' + OF , t'S0'0F '10000') .IGN(-))
LOUT(*4110000C*) | 'X(' intprt .OUT('41100010') ')' |
'F(' intprt (',' .OUT('41110004') intprt | .EMPTY)
'Y LOUT('41100014') | *E(' intprt
.00T(*'D20310041000) ¢, intprt *)' .O0UT('41100018")
| SMAP' .OUT('4110001C') | 'SPACE!' .0UT('41100020"'))
LO0UT{*18FE* , '05EF"Y);

intprt := LINT .OUT('S58' + .IGEN , '50' OF '10000') .IGN(-) ;
exec := 'EXECUTE' .ID.TYPE{'80SUBS') .ERR{('12 TILLEGAL
PROCESS NAME®) .SAV (%) .OUT {(¥5BF.% %2) .SAV(*2)
LSAV (*1) (' (' parms ')' | .EMPTY .OUT('9680F000' , A2
, '051E') .LABEL{R) .EXREF(R)) .LABEL{*1)
.OUT (*58F10000¢, Y05EF7) ;

parms := prmx .OUT('41FFOOO4' , *'50* OF 'FO000* , '92' R
FO00') .IGN(-)(', parms .OUT(*00000000') | .EHPTY
.OUT('9680F000' , *S8E.' R , A2 , '0S51E') .LABEL(R)
.EXREF(R) .OUT('00000000%')) ;

prmx ¢= prmprm{.ID prmtyp indx | .NUM .OUT('41' + .NGEN)
«SAV("02%) | INT ,OUT("417% + ,IGEN) .SAV(*01') | .SR
LOUT('58% + ', %2 '581.' %1 , *07F1') .LABEL(*2)
LOUT("#' #% t:t . '0700') LABEL(*1) .SAV('03') ;

prmtyp := .TYPE('O4INTE®) .SAV('01') | .TYPE('OUFLOAT')
.SAV('02') | .TYPE('8O0CHAR') .SAV('03') |
.TYPE('OOLABEL') .SAV('04') | .TYPE('O4EVENT!)

160

.SAV('05') | .TYPE('08FACIL') .SAV('06') |
.TYPE('01BOOL') .SAV('07') | .TYPE('O0STOR')
.SAV('08') | .TYPE('O0OQNAM') .ERR('08 IMPROPER PA-
RAMETER') .SAV('09') ;

prcss := YPROCESS' .ID ,LABEL(*) (*'(' prms *')' | .EMPTY) ;
prms := .ID .ERR('08 ONLY SIMPLE IDENTIFIER NAMES MAY BE
PARMS') .OQUT('41E.* * , *41110004*' , 'D203E0001000")
(*,' prms | .EMPTY) ;

tabu := YTABULATE' .ID .TYPE('OOTABLE') .OUT('58F.' %1 , A2
'051F') .EXREF/'ZBTBIT!) .OUT{'000000CC*} .LABEL(*1)
.OUT('S8E.' * , 'S50E10004' , *58F10000' , '0SEF') ;

\J

’

gqcom := 'DEQUEUE' .ID .TYPE('01QNAM') .ERR('08 NON-QUEUE
VARIABLE') indx .OUT('S58F.' %1 , A2 , '051F"')
.EXREF ('ZBQOUT') .LAREL(*1) .OUT('58F10000' , *181"
OF , *OSEF*').IGN{=){ *ENQUEUE® .ID .TYPE{'0O1QNAN")
.ERR('08 NON-QUEUE VARIABLE') indx .OUT (*58F.' *2 ,
T41FFO004 ') .SAV (*2) .SAV(%1) (',*
qposts.0UT(*00000000) { .EMPTY .OUT (*2620F000' , A2
'051E') .LABEL(R) .EXREF('ZBQIN') .OUT{*00000000"))
.LABEL (¥1) .OUT('58F10000* , 'S50' OF *10004"
'05EF') LIGN(-) ;

[4

[4

gposts := dgpsts .OUT('41FFOO04* , *'50' OF 'F0O000') .IGN(-)
(',' gposts .0UT (*00000000') | .EMPTY .0UT(
'*9680F000' , '58E.' R , A2 , '051E') .LABEL(R)
+EXPEF (*ZBQIN') .OUT(*00000000')) s

gpsts := .ID .TYPE('B4EVENTY) .ERR{08 ILLEGAL EVENT VARI-
ABLE') indx;

indx := LOUT('58% + *.% %) {'(' ,OUT(*18E* OF , ¢58' OF OF
10000} indexl ${',' indexl) '}' .ERR{'08 UNMATCHED
DARENTHESES') | .EMPTY) ;

indexl := expri .OUT('41EE0004* , *181% OF , *1BOO‘ ,
*5CO0E0000') .IGN (=) .OUT(*1A* OF *1r)

.
L

dacl := ('DECLARE' | 'DCL') declist $(',' declist)

.
*

d2clist := (*(* dlist | decelm typse* .TSET) IGN(*) ;

dlist := decelm (',' dlist .TSET | "Y' typset .TSET)

.
14

dacelm := JID .SAV(*) ('({(' decbknds $(',*' decbnds) ")' |
.EMPTY) ;

161

decbrds := LINT .SAV(R ',' %) (':' .INT ,SAV(R ':z' *) |
.EMPTY) ;
typset := 'LABFL' .NOP ('S80LABEL') | 'EVENT' .NOP('SUEVENT') |
 *FACILITY' .NOP('S88FACIL') | 'FLOAT' .NOP('84FLOAT')
| *INTEGER' .NOP('S84INTE') | 'BOOLEAN' .NOP ('B81BOOL')

['ENTRY' .NOP ('80SUBS') { 'INFILE' .NOP('S4SYSIN') |
"OUTFILE' .NOP(¥84PRINT') | 'STORAGE(* .INT

.NOP (*00STOR/00* *) 'y | 'QUEUE(' .INT .SAV(¥) (',*
DRTY' .NOP('O1QNAM/00 R) | (',' 'FIFO' | .EMPTY)
.NOP ('01QNAN/8Gt R)) ') ' | 'TABLE{' .OUT('58E.' %1 ,

"07FE') .SAV(®R S) .LABEL(R) tabfrm .LABEL(*1)
.NOP('00TABLE') ') ;

tabfrm := ,OUT('58F.' *1 , 'S58EF0000') .SAV(*1)
.SAV (*ZBTBITA') parms ;

genr := 'GENERATE' .GENRT .OUT ('58F.' *2) .SAV(*2) .SAV(¥1)
.OUT {*41100001" , '401FOCOA') gnstf .OUT{'41FFL008')
gpars .LABEL (*1) .OUT('58F10000* , '05EF') ;

gnstf := gnprt (',' gnstf | .EMPTY) ;

gnprt := ('MAX' .SAV('O4') | YMEAN' .SAV('06') { 'START'
.SAV('08') | 'DEVI' .SAV('OA')) .INT .OUT('58' +
.IGEN , '40' OF 'FOO' R) .IGN(-) ;

gpars := prmx ,OQUT('41FFO0004* , *SO* OF 'FO00OO* , '92' R
'F0000') .IGN(-) (',' gpars .OUT('00000000') | .EMPTY
.OUT (*9680F000* , '58E.' R, A2 , '051E') .LABEL(R)
.EXREF (' ZBGENT*) .0UT('00000000' , *00000000"
$000000006%))

terminte := LLABEL('@termi') .QUT('S8E.dterms' , '1BE1!
58F.dfinis® , '07DF* , *'S50E.sterms?! , '58' +
' _dextr' , '58F.' %1 , '18Et OF) _LABEL(*1)
.OUT(*181E' , ¢SB8EE0000* , '41EE0000' , 'S9E.2me'
*077ft , 'D2031000E000" , 'S8F.' %2 , A2 , '051F'")
. EXREF (*ZBFRWRK') .LABREL(*2) ,OUT('S8F10000*' , *181E"
, '58E.2dispt' , '07FP') .IGN(-) .LABEL('@finis')
.OUT {* 58F.0avway’ , BZ , "051F%) EXREF{'ZBOUT?")
.LABEL ('@away') .OUT('58F10000* , 'O7EF' , '58DD0OQ4"
, '98ECDOOC' , '1BFF! , 'Q7FE') ;

4

14

seize := L.LABEL('@seiz') .0OUT('58210004' , '583.2me' ,
'50R30008* , *50130014* , 'S84.@extr' ., '58F.' *1 ,
*18E4') .LABEL (*1) .OUT('185E' , 'S8EE0000* ,
41EE0Q00 , *19E3* , '077F*' , 'D2035000E000* ,
*S8F.% %2 , A2 , '05EFY) .EXREF('ZBQSP') .LRBEL(*2)

162

.0UT('1813!' , '58020004' , '58FEQ000' , '58F.a@dispt!
. '07FFY)

release := L.(LABEL('Qdrelse') .00T('780.@now' , '7B010000' ,
158210004 , *72020008* , *70020008*' , '58320004* ,
*1233' , '078E' , *'S58F.' *1 , *1B11') .LABEL(*1)
.OUT(*41110001* , *58330000' , *1233*' , '077F' ,
'58F.,% %2 , '5912000CY , ¥07DF* , *5012000C*)
.LABEL (*2) .0UT('58320004* , *'D20320043000" ,
'*58F.dchain' , A2 , '051F') .EXREF('ZBDISP')
.LABEL('@chain' .OUT(*S58F10000' , *182E' , '1813¢ ,
O5EF , '07F2') ;

prmprm := prmflt .SAV('02') { prmint .SAV('01")

prmnflt := 'PF! prmpart
prmint := 'P' prmpart ;

prmpart := LINT .QUT('58' + ',?me' , '58E' ,IGEN , '58' OF OF
t0008' , 'M1AEE' , '1AEE' , ‘1A' OF 'EY)

prmasgn := prmflt '=' expr .OUT('70' O OF '0000') .IGN(«2 -)
| prmint '=' jiexpr .OUT('50* OF P '0000') .IGN(- -) ;

163

RPPENDIX F

ELEMENTS OF THE ISU META PT COMPILER-COMPILER

Meta languages such as Backus Normal Form (BNF) were the
precursors of efforts to systematically produce compilers. The
original purpose of these meta languages was to standardize the
defirition of programming languages and to provide a rigid
structure for that definition, The extensions to this philoso-
phy naturally =volved into the area of the compiler-compiler
system. The assumption was made that if the language could be
described in some form of meta language then a translator could
be produced which would automatically produce a compiler for
that language.

The original meta languages were primarily concerned with
the syntactic qualities of the langquage, that is, those proper-
ties which define the validity of a language statement. A com-
piler must perform the function of syntax verification for the
input statements. This verification may be defined by a meta
language, therefore, the otvious process might involve a meta
language transiator for syntax checking.

The second major requirement of a compiler is not in gen-
eral satisfied by the meta languages. The association of mean-
irg (semantics) with a given statement is the phase which pro-

duces the necessary computer instructions. These instructions

164

may be in the form of actual machine code or as an intermediate
instruction set which may later be interpreted or converted to
machine code. This part of a compiler is not described by the
Backus Nermal Form or other meta langquages.

The two primary tasks of a compiler are to check the
syntax of the input statements and then to produce the proper
instructions according to the semantics of the language. A
proper meta compiler~compiler language must provide facilities
for both syntactic and semantic definitions. These basic fa-
cilities were designed into the META series of compiler-
compilers described by D.V.Schorre and his associates at UCLA
(23).

The basic parsing algorithm of the META type compiler is
top-down left to right and deterministic. Top-down means the
compiler first decides which rule should be satisfied next and
then checks the input (or calls new rules) according to the al-
ternatives of the rule. On the other hand, a bottom-up parser
would check the input and then determine which rules may be
used to describe it. The top-down parser has some advantages
for a compiler-compiler. First, the compiler generates code

. .
Smmads
- AN N

2én v MLI A~ mwrmemmema 23 me o
B Y S P A EN

Y. ¥S generality, in particular,
for incremental compilation. FError detection is easily
achieved because of the deterministic parser. Backup is only
provided when explicitly requested. Thirdly, the deterministic

parser has fewer choices to pick from, therefore, it is faster

165

than the non-deterministic parser.

As previously stated, the first task of a compiler-
compiler language is to provide a syntax checking capability.
This syntactic capability has been provided by earlier meta
languages such as BNF. Unfortunately, BNF was not designed
with semantic operations in mind.

The META PI compiler-compiler as described by J.T. O0'Neil
(17) has attempted tc¢ remedy this situation. &n extended BNF
is used to contain both syntactic and semantic elements. Th=
result of this compiler-compiler is machine code which is the
compiler for the language described. This code consists pri-
marily of a set of subroutine calls which perform a recursive
left to right scan of the source statements of the particular
cempiler language it describes.

Four major extensions were made *o the BNF form. These
extensions were made to include semantic operations and to
simplify the description of the language. These four
extensions are:

1. The inclusion of factoring and the addition of an it-
erative operator. Two reasons motivated these changes. First,

the use of a § enables the compiler to identify an iterative

4]

operation immediately., This greatly simplifies the compilation
process. Second, from « descriptive point of view, the itera-
tive description simplifies the identification of proper

strings defined by the statement. The $ is interpreted to masan

166

"followed by an arbitrary sequence of". Therefore, the BNF
statement
<A> 3= | <ADKCY> | <AKD>
becomes
A := B$(C | D)

2. The semantics are included within the syntax of a
statement. This allcws generation of object code as the scan
of the statement proceeds. In many statements the generation
0of code and the input scan complete simultaneously. Both syn-
tactic and semantic operations are aided by commands called
primatives which provide standard actions and tests.

3. As previcusly noted, backup of the scan and code gen-
eration is explicitly controlled through special commands.
This facility allows a retry with a different definition to
resolve ambiguities.

4. The compiler writer is provided with the capability
of generating compile time error comments with a special error
command. This capability allows extensive error messages with
a minimum of effort.

Minor differences in the writing of the statements also

nguish META T

1
. tne

el
(53]

P - L T
STl 4L 1LiO0l DN

[

o
Q

t

holad:

META PI BNF

ABC <ABC>

167

*Xyz! XY7

In addition:

1. A ; {semi-colon) will terminste a META PI statement.

2. Parentheses will be used to simplify BNF and to pro-
vide an indication of factoring.

3. A $ replaces BNF finite state recursion.

META PI statements contain 3 types of elements:

1. The syntactic elements create code to test for syn-
tactic expressions in the source input. These elements are

used to generate the syntax verification phase c¢f the compil

[¢]

r.

2. The semantic elements assign a given meaning to the
input string. These elements produce the computer instructions
for the execution of the progranm.

3. META syntactic elements are compiled into code which
will allow the user's compiler to efficiently resolve possible
conflicts (ambiguities) by the use of a backup facility.

These three element types are combined to produce the META
PT irput which will define a user compiler. The general form
of a META PI statement is:

LABFL := expression ;

The left hand side is a unigue identifier #which Serves as a

i

reference to the expression on the right hand side (a META PI
identifier is defined as a letter (A-Z) followed by an arbi-
trary sequence of letters or digits). The character pair :=

serves as a delimiter and separates META PI statements from

68

user source statements. These statements are compiled into re-
cursive code, +therefore, the expression may contain either a
direct or indirect reference to itself. One of three results
is produced by these statements:

1. True. The input scan has satisfied the expression
and the input pointer is updated past the correctly scanned
data.

2. False. The input does not satisfy the expressior.
Therefore, the input pointer is left unaltered.

3. Ervor. A prefix cf the expression is correctly iden-
tified but the remainder of the expression is not satisfied by
the input string. The input pointer is partially updated ani
the error routine inserts a ? after the last character success-
fully scanned.

A detailed discussion of the various elements which com-
prise META PI expressions follows. These elements are grouped

irte like types for ease of reference.

Svyntactic Elements

PEXXXK.. WX The X's represent any character string. This
syntactic element creates code which tests the
current input string for the sequence of chac-
acters contained w¥ithin the apostrophes.

ABC This produces a call to the routine or expres-
sicn labeled ABC. The expression represented
by ABC is the definition of the next part of
the input string. This is the first of two
forms of linkage to routines. The second form
is writter with a period preceding the name.
In general, the distinction is that the rou-

< ID

<EMPTY

< NUM

+INT

.TYPE('NNYYY?)

. TO (' XXX')

169

tines with a preceding period are considered to
be built-in functions while the ordinary call
is generally to a function written in META PI.
When the period notation is used META PI will
assume that the call is not recursive.

This routine makes a test for a META PI identi-
fier. Code is generated to link to +he .ID
routine. The period notation implies that this
routire does not subsequently link to itself.

A special syntactic operation which forces the
true setting of the truth indicator regardless
of the contents of the input string.

A test for a numeric literal sequence which
represents a fractional real number. This nunm-
ber is directly related to the floating point
type of numbers and must contain a decimal
point.

An integer number test on the input string.

Actually a cross between syntax and semantics,
this routine references the labels to find the
label contained in the current string. When
found, a comparisorn is made to determine if the
type specified by YYY is correct. The flags NN
determine if the type may be a default type and
how much space is to be allocated for one ele-
ment.

A general search test which searches the input
string until an XXX is found. If the input

strirng runs out before the search is satisfied,
a "false" return is made. This test is useful

for such things as comments.

+ERP {*NNXXX...X') The primary method of producing error mes-

sages for the user language. If the previous
test has failed, the string HNHXXX...X is
printed as an error message. The digits NN are
retained as a completion code. The maximum NN
is used as a return code at the end of the
compile step.

A test for a character string enclosed in
apostrophes. The test leaves the string point-
er pointing at the terminating apostrophe.

170

Semantics for code generation

Two types of semantic functions are contained in META PI.
These two elements are interconnected since the semantic op-
erations are always contained within the semantic commands.
Each semantic command generates an element of the final object
progranm.

Semantic Commands

LOUT(...) This command causes the current contents of the
output area (a temporary area where code is
being created by the user's compiler) to be
converted to internal form. This output area
serves as a staging area for output in internme-
diate forms. The output is formed by the se-
mantic operations contained within the paren-
theses. Three actions are possible depending
on the structure of these operations.

1. If the first character is not a
letter or a digit, then the rest of
the output area is copied directly
into the code area.

2, If the fourth character is a period
or a blank, it produces actions which
assume that an index register based
address is required. The symbolic ad-
dress following the period or blank
will be looked up in a label table and
an actual internal address generated
for the variable.

3. If the above two cases fail, the
character string is assumed to be ma-
chine code and it is converted direct-
ly into the code area.

A series of operations may be put into a
single ,0UT command by separating the operation
sets with conmmas.

.LABEL (...) The current contents of the output area is used
as a search argqument in the label table. If
the label already exists, the current core lo-
cation is filled in. If the label does not

171

exist in the table, it is entered. If the
label is already defined an error results.

LIGN (..) The current contents of the output area are
igncred. This command is necessary becauss
many of the semantic operations have side
effects such as releasing registers.

«NOP (...) This command produces the effect of the seman-
tic operations but no more. The results of the
semantic operations will be left in the output
area.

+EXREF (. ..) The symbolic name in the output area is recog-
nized as an external reference. A four-byte
field is reserved for the address, and informa-
tion is stored to produce the reference later.

. DECK A command which uses as input all of the infor-
mation stored in 1) the label table, 2) the ex-
ternal reference table, and 3) the working core
to produce an object module which represents
the compiled program. Normal save area conven-
tions are automatically generated at the begin-
ning of the object module, but not at the
return points.

.TSET A generalized declaration primitive, .TSET re-
ceives its input from 1) the top of the save
stack, and 2) the output buffer. The output
buffer must contain a type declaration of the
same form as required by .TYPE. The top ele-
ment of the save stack must contain the vari-
able name followed by its array bounds, if any.
The array bounds must be of the form:

[lower bound: J upper bound
where the brackets indicate optional itenms.

Semantic Operations

The semantic operations are used to generate code in the
cutput area. This code is in intermediate forms which must be
converted to an internal form. These operations are not al-
lowed to alter the input pointer or the truth indicator. &

pointer is maintainred to remember the next available location

172

in the output area. This pointer is updated after some of the

semantic commands. The semantic operations are:

'ccC...C!

%1

%2

A2

Al

W1,94,HW8

R1,R4,R8

Suffix the string between the apostrophes to
the output area.

Suffix the current input string to the contents
of the output area. This operation is usually
used in conjunction with a successful ,ID test.

Save the current contents of the output area in
a pushdown list and push down the list.

Restore (suffix to the output area) the top of
the pushdown list and pop up the list.

Ignore the top element of the pushdown list
{pop it outj.

Swap (exchange) the top two elements in the
pushdown list.

Generate a giobally unique four byte character
string beginning with the character #. This
string will be locally constant and provides a
convenient way to label and reference locations
in the generated code.

A second globally unique, locally constant var-

An aligument operation which forces the next
operation to occur on a half-word boundary (but
not a full-word boundary) by filling in "no op-
eration" codes.

Same as A2, but for full-word houndaries.

Work space operations to acquire space of
length one, four, and eight bytes, respective-
ly.

WHork space operaticns to release space of
length one, four, and eight bytes, respective-
ly.

A set of semantic routines exist for the use of the general

purpose and floating peint registers. A type of pushdown list

173

is maintained at compile time for both types of registers.

There are eight general purpose and four floating point regis-

ters available to the user. If more registers are needed,

coding will be automatically generated to save and restore

registers.

This save and restore operation is a side effect

of the following semantic operations.

0F

Output the current general purpose register.
Output the current floating point register.
Output the previous general purpose register.
Output the previcus floating point redister.

Output the next free general purpose register
and make it current.

Output the next free floating point register
and make it current.

Output two general purpose registers. The
first one is the previous register, the second
is the current register. Upon completion, the
previous register is made current. ?hls opera=
tion is to take advantage of the register to
register operations.

Output a pair of floating point registers. The
action is the same as the semantic operation
for general purpese registers.

META _Syntactic_Commands

A final class of commands, the META syntactic commands

are added to contrcl the in*ernal operation of META PI. These

commands aid the user in producing efficient compiler code.

-LATCH (name)

This comnand causes the routine in parent;esis
to be called. 1In addition, pointers are kep
so that if an exit +o the error routine occurs,

backup will be affected.

174

C This operator may occur anywhere a semantic op-
erator may occur. It causes the last .LATCH
operation to be ignored if an error occurs.

.CLAMP This operator may occur anyvwhere a semantic op-
erater may occur. It directs the compiler to
ignore all preceding .LATCH operations.

«SAV (...) The semantic operations represented by ... are
performad and the output buffer is then entered
into the pushdown list, and the list is pushed

down.

.RES The top element of the pushdown list is
restored to the current string and the list is
popped up.

The META PI compiler-compiler is sufficiently versatile to

"

describe itself, &s a final definition of the compiler-

compiler, its META PI definition follows:

cest .ID .LABEL (%) ':=' .NOP(C) ccx2 $('|' .OUT('078A")

ccx2) 3¢ OUT('07FA');

.o

ccx2 := $cco ccx3e .QUT('S58E.' *1) .OUT(*O077E') $(cco |
ccx3e .OUT ('477..ERR')) .LABEL(*1);

cco := (P.OUT(F | *.TGN(* .OUT('92FFS00A")) S$ccol
+OUT (*0SEY") $(*," $ccol .OUT(*OU5EI7)))¢ |
' LABEL (' $ccol ')* .OUT(S4SE..LABE') | *.DO(' $(.SR
LOUT(®) F%' 3)t | *OPT(' ccx1 ')' .OUT{0420") |
'.SAV(' $ccol ¥)' OUT('45E..SAV') | *.NOP(' $ccoi
!"!;

ccol := ccosub .QUT('45E..' *) | *CY .OUT('4SE..LATX') { .SR
LOUT('05EU?) .QUT('#" #* 1:%) v

ccosub 1= YR4T | YRBY | W4 | YWEY | FRAV | TWI' | TRZY
|Aa0 ! *1' | lg‘ l 170 ' 14210 l tet I 19t I !-2! '
taljv ! tat ' 'Xi I '*2' ' (OF' ! lOl l T § ' L3 | !
.. ID

ccx3e = ccx3 (*.ERR(' .SR .OUT('05E2') .OUT('#' #x ;v
teron v 1 LEMPTY)

175

ccx3

.
it

.ID .OUT('41E.' %) ,OUT(70503') | .SR

.OGT (*45E. ,TEST') .OUT('#' #% tz1) vev | (1 ccy?
"yt [t ENPTY' .QUT('0420') | '$' .LABEL{*1) ccx3
LOUT('S8E.* *1) .OUT('078E') .OUT('0420") |

* LATCH(' .ID .OUT ("41E.' % , '450,.LATCH?) 7)' |

' TYPE(' .SR .OUT('U45E..TYPY , '#' #% 1:7) vev aye
1,0 ,ID LSAV(*) (' (' $CCO1 ')' | .EMPTY)

.OUT ('45E.. "' R);

ccx1 1= ccx2 $('|' .OUT(*S8E.*' *1 , '078E') ccx2)
«LABEL(*1) ; .

	1972
	Symbiotic computer system measurement and evaluation
	Dana Wayne Zimmerli
	Recommended Citation

	tmp.1412711728.pdf.idk6u

